Instructing Goal-Conditioned Reinforcement Learning Agents with Temporal Logic Objectives

NeurIPS 2023

Rutgers University

Wenjie Qiu*

Wensen Mao*

He Zhu

wq37@cs.rutgers.edu

wm300@cs.rutgers.edu

hz375@cs.rutgers.edu

Goal-Conditioned Reinforcement Learning (GCRL)

• Reach arbitrary goals in the goal space from initial environment states

Go to JetBlack

Reach ★ with random start 🔸

Linear Temporal Logic (LTL)

- Define a sequence of tasks in the chronological order
- May include infinite loop task (ω -regular property)

Ant Maze

ZoneEnv

 $F(\bullet \wedge F(\circ \wedge F(\bullet \wedge F \bullet))$

$$F((room(0,2) \lor room(2,0)) \land F room(2,2))$$

Reach orange room via one possible orange path

Prior approaches

- DiRL [Jothimurugan et al. 2021]
- Generate abstract graph from LTL specification and train independent policies for each edge to achieve subgoals
- Inefficient and lack of generalizability

- LTL2Action [Vaezipoor et al. 2021]
- Encode LTL formulas as syntax trees, enable RL agent to learn LTL-conditioned policies
- Unable to generalize to arbitrary
 LTL formulas

GCRL-LTL algorithm framework

with $\tau \sim B$ (a replay buffer), $t \sim \{0 \dots t_{max}\}$, $s_t, a_t, s_{t+1} \sim \tau$, $j \sim \{0, t\}$, $k \sim \{t + 1 \dots t_{max}\}$, and L as the state labeling function. We train \mathcal{V} together with a goal-conditioned learning algorithm.

Goal Reaching and Obstacle Avoidance

For example, reach-avoid task on one edge : ¬ ● U ●

Experiments on Ant16rooms

	Methods	DiRL	DiRL+ GCSL	Ours
	ϕ_1	0.910 (0.022)	0.923 (0.082)	0.967 (0.006)
	ϕ_2	0.770 (0.083)	0.953 (0.037)	0.925 (0.049)
	ϕ_3	0.367 (0.147)	0.967 (0.017)	0.935 (0.028)
	ϕ_4	0.183 (0.046)	0.937 (0.031)	0.875 (0.041)
	ϕ_5	0.043 (0.061)	0.913 (0.017)	0.868 (0.038)
ſ	ϕ_6	/	/	0.857 (0.004)
ω-	ϕ_7	/	/	0.882 (0.018)
	ϕ_8	/	/	0.903 (0.045)

Choose to execute the loop with a smaller path cost!

 $\phi_8 = \blacksquare \rightarrow (\blacksquare) \ ^{\omega} \lor \blacksquare \rightarrow (\blacksquare) \ ^{\omega}$

Experiments on ZoneEnv

More complex experiments on ZoneEnv

