

How a Student becomes a Teacher: learning and forgetting through Spectral methods

Lorenzo Giambagli^{1,2}, Lorenzo Buffoni¹, Lorenzo Chicchi¹, Duccio Fanelli¹

¹CSDC, INFN, Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy

²naXys - Center for Complex Systems, Department of Mathematics, University of Namur, Namur, Belgium

Teacher Student framework

Widely used machine learning scheme. The Student network needs to approximate the Teacher network

Where the regularization term Ω is:

- $\Omega(w) = \alpha_w L_2(w)$ if the layer is **Dense**
- $\Omega(\phi, \lambda) = \alpha_{\phi} L_2(\Phi) + \alpha_{\lambda} L_2(\lambda)$ if the layer is **Spectral** Then the feature norm is extracted and compared. More specifically we have:
 - $R_{dense}^{j} = \left(\sum_{k=1}^{d} w_{jk}^{2}\right)^{1/2}$ if the layer is Dense
 - $R_{spectral}^{j} = \lambda_{j}^{out} \left(\sum_{k=1}^{d} \phi_{jk}^{2} \right)^{1/2}$ if the layer is Spectral

The **histogram** of R_{dense} (in orange) and $R_{spectral}$ (in blue) is **shown** for **different** h. Remarkably, with the spectral regularization, a core of non-zero eigenvalues can be spotted as soon as h > 20, namely Teacher's dimension $h_{Teacher}$, whereas the large majority is basically

Question: Can we know where the Teacher is inside the Student network?

Training in Spectral Domain

We **decompose** the **adjacency matrix** of the network into **eigenvalues** λ_k^{in} and λ_k^{out} , and **eigenvectors** ϕ_k , where kranges across the layers of the neural network. The **learning** procedure is then **reframed** in terms of these global parameters, allowing for the simultaneous adjustment of multiple weights. Each transfer identifies two groups: *in*bound neurons (layer k - 1) and *out*bound neurons (layer k).

We can **parametrize** the **connection** with respect to the eigenvectors components and the eigenvalues obtaining a closed and simple formula.

zero. The same effect holds true for different Teacher sizes.

The Invariant Subnetwork

If we examine the size of the non-zero core across a wide range of *h*, we observe **distinct behaviours** depending on the type of regularization employed, whether it be Spectral or Weight Decay.

Activity transfer from layer
$$k - 1$$
 to k :
 $x_k = \widetilde{w_k} x_{k-1} = \sigma \left[\left(\phi_k \odot \lambda_k^{in^T} - \lambda_k^{out} \odot \phi_k \right) x_{k-1} \right]$
In components, dropping index k on ϕ, λ
 $(x_k)_i = \sigma \left[\sum_j \left(\phi_{ij} \lambda_j^{in} - \lambda_i^{out} \phi_{ij} \right) (x_k)_j \right]$

The **number of trainable** λ are of the **same order** as the **neurons**. A much more efficient training is possible. In the following $\lambda^{in} = 0$ for simplicity. In this framework $\nabla_{\lambda_k, \phi_k} Loss$

The **test performance** remains **consistent** across all models, irrespective of the type of layer employed. The **spectral** network is then **node pruned** based on the $R_{spectral}$ metric, which serves as a measure of feature relevance. When plotting the **variation** in mean squared error (**MSE**) with respect to the unpruned network, we observe a **phase transition-like** behavior. The trend of Δ_{MSE} remains consistent **regardless** of the **initial size** *h*, and the **critical point** occurs when the pruned network reaches **the same size** (complexity) as the **Teacher** network. Same results also with more realistic dataset (F-MNIST-MNIST-California Housing-CIFAR100 (with ResNet50 backbone)

Spectral Regularization

Thanks to this novel approach, we can incorporate featureoriented regularization. Furthermore, this relationship can be utilized to comprehend the **most significant nodes (features)** involved in information processing throughout the network.We define the following Loss function:

$$L = MSE(y, y_{pred}) + \Omega(\cdot)$$

References

- Giambagli, L., Buffoni, L., Carletti, T., Nocentini, W. & Fanelli, D. Machine Learning in Spectral Domain. *Nature Communications* 12, 1–9 (2021)
- Chicchi L., Giambagli L., Buffoni L., Carletti T., Ciavarella M., Fanelli D. Training of sparse and dense deep neural networks: Fewer parameters, same performance. Phys. Rev. E104 (2021)
- Buffoni, L., Civitelli, E., Giambagli, L., Chicchi, L., & Fanelli, D. Spectral Pruning of Fully Connected Layers Scientific Reports (2022)

Lorenzo Giambagli

Department of Physics, University of Florence (Italy) Department of Mathematics & (naXys) Namur Institute for Complex Systems, Université de Namur (Belgium) Iorenzo.giambagli@unifi.it Iorenzo.giambagli@gmail.com

