



# THE UNIVERSITY OF EDINBURGH

#### Adapting Neural Link Predictors for Data-Efficient Complex Query Answering

Pasquale Minervini

School of Informatics, and ELLIS University of Edinburgh Edinburgh Scotland p.minervini@ed.ac.uk Erik Arakelyan Department of Computer Science University of Copenhagen Copenhagen Denmark erika@di.ku.dk Daniel Daza Faculty of Science Vrije Universiteit Amsterdam Amsterdam Netherlands d.dazacruz@vu.nl

Michael Cochez Learning and Reasoning group Vrije Universiteit Amsterdam Amsterdam Netherlands m.cochez@vu.nl Isabelle Augenstein Department of Computer Science University of Copenhagen Copenhagen Denmark augenstein@di.ku.dk

#### About Knowledge Graphs and Complex Query Answering

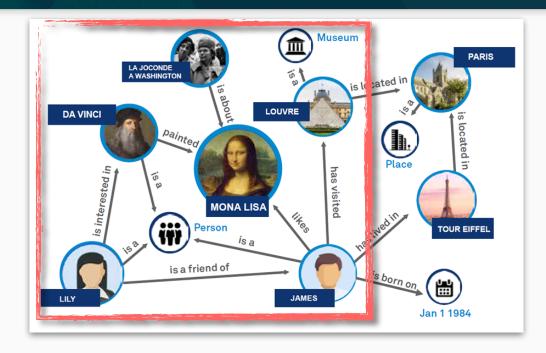






## **Knowledge Graphs**

- Knowledge Graphs A Knowledge Graph (KG) is a knowledge base representing the relationships between entities in a relational graph structure
- The flexibility of this knowledge representation formalism allows KGs to be widely used in various domains.



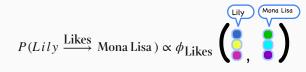




# VU

## **Link Prediction**

- What works did L. Da Vinci paint ?
  - Can be answered with traversal!
- What does Lily like ?
  - Cannot be directly answer with traversal.
  - Need to use a neural function to predict the probability





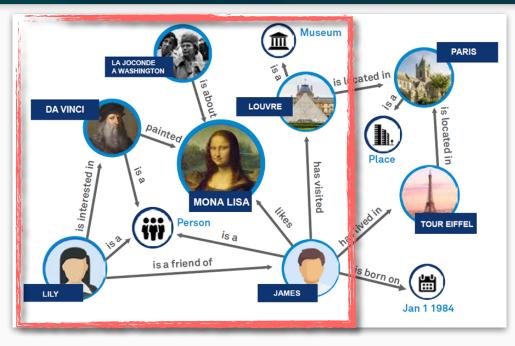






## Complex Query Answering

- Complex queries involve answering multi-hop questions that include logical conjunctions (∧), disjunctions (∨) and negations (¬)
- Which people are likely to have visited the Louvre given that they are interested in Da Vinci or like Mona Lisa ?
- Which German person produced the music for the film Constantine?



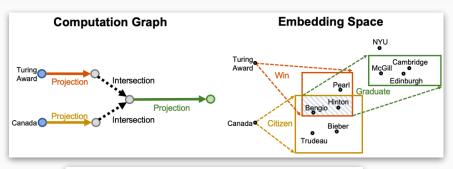






#### How is this Done?

- Query Embedding based methods.
  - GQE Hamilton et al. [NeurIPS 2018]
  - Query2Box Ren et al. [NeurIPS 2020]
  - BetaE -Ren et al. [ICLR 2020]
  - etc.
- Symbolic and hybrid methods
  - <u>CQD Arakelyan et al. [ICLR 2020]</u>
  - GNN-QE Zhu et al. [ICML 2022]
  - EmQL Sun et al. [NeurIPS 2020]
  - Etc.





Zhu et al. [ICML 2022]







## **Query Answering as Optimization**

**Proposed solution:** train a neural model  $\phi$  for answering atomic (simple) queries (e.g. "which people are German?"), and cast the query answering task as an *optimization problem* 

 $Q \equiv ?T$ : Country(Germany, T)  $\land$  music(Constantine, T)







## Query Answering as Optimisation

**Proposed solution:** train a neural model  $\phi$  for answering atomic (simple) queries (e.g. "which people are German?"), and cast the query answering task as an *optimization problem* 

 $Q \equiv ?T$ : Country(Germany, T)  $\land$  music(Constantine, T)





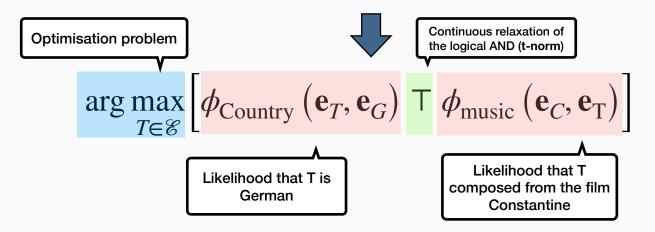


THE UNIVERSITY



## **Query Answering as Optimisation**

 $Q \equiv ?T$ : Country(Germany, T)  $\land$  music(Constantine, T)

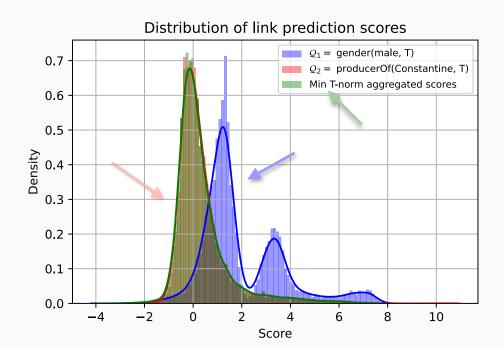






## VU

#### Limitations



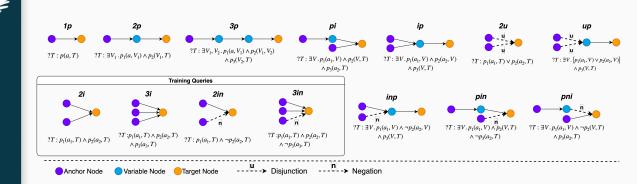
- Limitations
  - The neural link predictor used is not explicitly optimised for the complex query answering task, implying that its scores are not calibrated to interact together
  - Logical negations are not supported



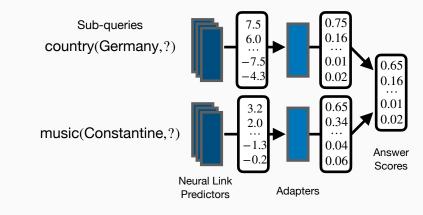
To overcome this limitations we propose  $CQD^{\mathscr{A}}$ , a parameter-efficient score adaptation model optimized to re-calibrate neural link predictor scores for complex query answering task.

We evaluate the method on an existing benchmark of <u>3</u> Knowledge Graphs covering diverse domains while also analyzing the method in terms of generalization, data and parameter efficiency.

In our experiments,  $CQD^{\mathscr{A}}$  produces more accurate results than current state-of-the-art methods, improving from 34.4 to 35.1 Mean Reciprocal Rank values averaged across all datasets and query types while using  $\leq 30\%$  of the available training query types.



Which people are German and produced the music for the film Constantine?  $@ \equiv ?T : Country(Germany, T) \land music(Constantine, T)$ 

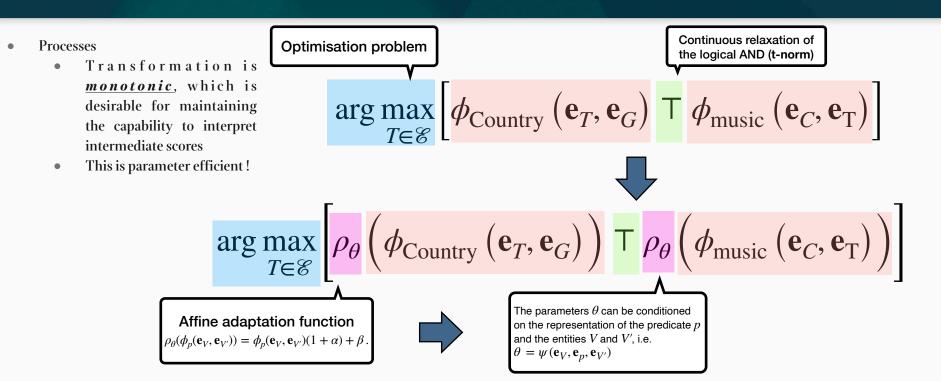








## Calibration of atomic scores





• For training the score calibration component in, we first compute how likely each entity  $a' \in \mathcal{E}$  is to be an answer to the query Q.

$$\begin{array}{c} \text{Score}(\mathcal{Q}, A \leftarrow a') = \max_{S} \text{Score}(\mathcal{Q}, S), \text{ where } A \leftarrow a' \in S \\ \hline \\ \text{Query Answer} \\ \text{assignment} \end{array}$$

• We optimize the adaptation parameters by gradient descent on the likelihood of the true answers on a dataset of query-answer pairs by using a *1-vs-all cross-entropy loss* 

$$\mathscr{L}(\mathscr{D}) = \sum_{(\mathscr{Q}_i, a_i) \in \mathscr{D}} -\operatorname{score}(\mathscr{Q}_i, A \leftarrow a_i) + \log \left[ \sum_{a' \in \mathscr{E}} \exp\left(\operatorname{score}(\mathscr{Q}_i, A \leftarrow a')\right) \right].$$





#### Results

| Model    | avg_p | avg_n | 1p   | 2p   | 3p   | 2i           | 3i   | pi   | ip   | 2u   | up   | 2in  | 3in  | inp  | pin  | pni  |
|----------|-------|-------|------|------|------|--------------|------|------|------|------|------|------|------|------|------|------|
|          | FB15K |       |      |      |      |              |      |      |      |      |      |      |      |      |      |      |
| GQE      | 28.0  | -     | 54.6 | 15.3 | 10.8 | 39.7         | 51.4 | 27.6 | 19.1 | 22.1 | 11.6 | -    | -    | -    | -    | -    |
| Q2B      | 38.0  | -     | 68.0 | 21.0 | 14.2 | 55.1         | 66.5 | 39.4 | 26.1 | 35.1 | 16.7 | -    | -    | -    | -    | -    |
| BetaE    | 41.6  | 11.8  | 65.1 | 25.7 | 24.7 | 55.8         | 66.5 | 43.9 | 28.1 | 40.1 | 25.2 | 14.3 | 14.7 | 11.5 | 6.5  | 12.4 |
| CQD-CO   | 46.9  | -     | 89.2 | 25.3 | 13.4 | 74.4         | 78.3 | 44.1 | 33.2 | 41.8 | 21.9 | -    | -    | -    | -    | -    |
| CQD-Beam | 68.4  | -     | 89.2 | 65.3 | 29.7 | 76.1         | 79.3 | 70.6 | 70.6 | 72.3 | 59.4 | -    | -    | -    | -    | -    |
| ConE     | 49.8  | 14.8  | 73.3 | 33.8 | 29.2 | 64.4         | 73.7 | 50.9 | 35.7 | 55.7 | 31.4 | 17.9 | 18.7 | 12.5 | 9.8  | 15.1 |
| GNN-QE   | 72.8  | 38.6  | 88.5 | 69.3 | 58.7 | <b>79.</b> 7 | 83.5 | 69.9 | 70.4 | 74.1 | 61.0 | 44.7 | 41.7 | 42.0 | 30.1 | 34.3 |
| CQDA     | 70.4  | 42.8  | 89.2 | 64.5 | 57.9 | 76.1         | 79.4 | 70.0 | 70.6 | 68.4 | 57.9 | 54.7 | 47.1 | 37.6 | 35.3 | 24.6 |

VU





#### Results

|          | FB15K-237 |      |      |      |      |      |      |      |      |      |      |      |      |     |     |     |
|----------|-----------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
| GQE      | 16.3      | -    | 35.0 | 7.2  | 5.3  | 23.3 | 34.6 | 16.5 | 10.7 | 8.2  | 5.7  | -    | -    | -   | -   | -   |
| Q2B      | 20.1      | -    | 40.6 | 9.4  | 6.8  | 29.5 | 42.3 | 21.2 | 12.6 | 11.3 | 7.6  | -    | -    | -   | -   | -   |
| BetaE    | 20.9      | 5.5  | 39.0 | 10.9 | 10.0 | 28.8 | 42.5 | 22.4 | 12.6 | 12.4 | 9.7  | 5.1  | 7.9  | 7.4 | 3.5 | 3.4 |
| CQD-CO   | 21.8      | -    | 46.7 | 9.5  | 6.3  | 31.2 | 40.6 | 23.6 | 16.0 | 14.5 | 8.2  | -    | -    | -   | -   | -   |
| CQD-Beam | 25.3      | -    | 46.7 | 13.3 | 7.9  | 34.4 | 48.3 | 27.1 | 20.4 | 17.6 | 11.5 | -    | -    | -   | -   | -   |
| ConE     | 23.4      | 5.9  | 41.8 | 12.8 | 11.0 | 32.6 | 47.3 | 25.5 | 14.0 | 14.5 | 10.8 | 5.4  | 8.6  | 7.8 | 4.0 | 3.6 |
| GNN-QE   | 26.8      | 10.2 | 42.8 | 14.7 | 11.8 | 38.3 | 54.1 | 31.1 | 18.9 | 16.2 | 13.4 | 10.0 | 16.8 | 9.3 | 7.2 | 7.8 |
| CQDA     | 25.7      | 10.7 | 46.7 | 13.6 | 11.4 | 34.5 | 48.3 | 27.4 | 20.9 | 17.6 | 11.4 | 13.6 | 16.8 | 7.9 | 8.9 | 5.8 |

VU





#### Results

| NELL995  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |     |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| GQE      | 18.6 | -    | 32.8 | 11.9 | 9.6  | 27.5 | 35.2 | 18.4 | 14.4 | 8.5  | 8.8  | -    | -    | -    | -    | -   |
| Q2B      | 22.9 | -    | 42.2 | 14.0 | 11.2 | 33.3 | 44.5 | 22.4 | 16.8 | 11.3 | 10.3 | -    | -    | -    | -    | -   |
| BetaE    | 24.6 | 5.9  | 53.0 | 13.0 | 11.4 | 37.6 | 47.5 | 24.1 | 14.3 | 12.2 | 8.5  | 5.1  | 7.8  | 10.0 | 3.1  | 3.5 |
| CQD-CO   | 28.8 | -    | 60.4 | 17.8 | 12.7 | 39.3 | 46.6 | 30.1 | 22.0 | 17.3 | 13.2 | -    | -    | -    | -    | -   |
| CQD-Beam | 31.8 | -    | 60.4 | 22.6 | 13.6 | 42.6 | 52.0 | 31.2 | 25.6 | 19.9 | 16.7 | -    | -    | -    | -    | -   |
| ConE     | 27.2 | 6.4  | 53.1 | 16.1 | 13.9 | 40.0 | 50.8 | 26.3 | 17.5 | 15.3 | 11.3 | 5.7  | 8.1  | 10.8 | 3.5  | 3.9 |
| GNN-QE   | 28.9 | 9.7  | 53.3 | 18.9 | 14.9 | 42.4 | 52.5 | 30.8 | 18.9 | 15.9 | 12.6 | 9.9  | 14.6 | 11.4 | 6.3  | 6.3 |
| CQDA     | 32.3 | 13.3 | 60.4 | 22.9 | 16.7 | 43.4 | 52.6 | 32.1 | 26.4 | 20.0 | 17.0 | 15.1 | 18.6 | 15.8 | 10.7 | 6.5 |

VU







#### Model Modes

| Model   | 2р   | 2i   | 3i   | pi   | ip   | 2u   | up   | 2in  | 3in  | inp | pin | pni |
|---------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
| CQD     | 13.2 | 34.5 | 48.2 | 26.8 | 20.3 | 17.4 | 10.3 | 5.4  | 12.4 | 6.1 | 3.2 | 4.6 |
| CQD_F   | 9.3  | 22.8 | 34.9 | 19.8 | 14.5 | 13.0 | 7.2  | 7.4  | 7.1  | 4.9 | 3.9 | 3.8 |
| CQD^A_F | 9.5  | 23.9 | 39.0 | 19.8 | 14.5 | 14.2 | 7.2  | 8.4  | 9.7  | 4.9 | 4.2 | 3.6 |
| CQD_C   | 10.9 | 33.7 | 47.3 | 25.6 | 18.9 | 16.4 | 9.4  | 7.9  | 12.2 | 6.6 | 4.2 | 5.0 |
| CQD_R   | 6.4  | 22.2 | 31.0 | 16.6 | 11.2 | 12.5 | 4.8  | 4.7  | 5.9  | 4.1 | 2.0 | 3.5 |
| CQDA    | 13.2 | 35.0 | 48.5 | 27.3 | 20.7 | 17.6 | 10.5 | 13.2 | 14.9 | 7.4 | 7.8 | 5.5 |

Test MRR results for FOL queries on FB15K-237 using the following CQD extensions:CQD from Arakelyan et al. with the considered normalisation and negations; CQD\_F, where we fine-tune <u>all neural link predictor parameters</u> in CQD; CQD^A\_F, where we <u>fine-tune all link predictor</u> <u>parameters</u> in CQD; CQD^A\_F, where we <u>learn a transformation</u> for the entity and relation embeddings and we use it to <u>replace</u> the initial entity and relation representations; and CQD\_C, where we learn a transformation for the entity and relation embeddings, and we <u>concatenate</u> it to the initial entity and relation representations.







## Data Efficiency

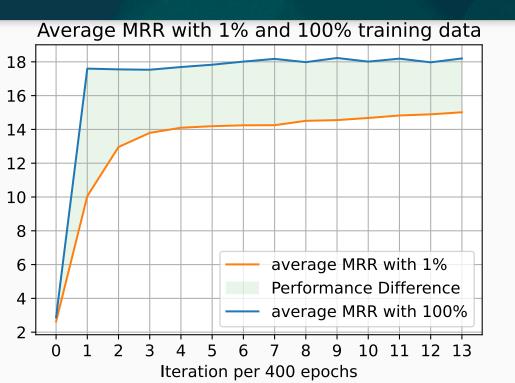
| Dataset         | Model      | 1p    | 2p   | 3р   | 2i    | 3i    | pi    | ip    | 2u    | up   | 2in  | 3in   | inp  | pin  | pni   |
|-----------------|------------|-------|------|------|-------|-------|-------|-------|-------|------|------|-------|------|------|-------|
|                 | CQDA       | 46.7  | 11.8 | 11.4 | 33.6  | 41.2  | 24.82 | 17.81 | 16.45 | 8.74 | 10.8 | 13.86 | 5.93 | 5.38 | 14.82 |
| FB237,<br>1%    | GNN-<br>QE | 36.82 | 8.96 | 8.13 | 33.02 | 49.28 | 24.58 | 14.18 | 10.73 | 8.47 | 4.89 | 12.31 | 6.74 | 4.41 | 4.09  |
|                 | BetaE      | 36.80 | 6.89 | 5.94 | 22.84 | 34.34 | 17.12 | 8.72  | 9.23  | 5.66 | 4.44 | 6.14  | 5.18 | 2.54 | 2.94  |
|                 | CQDA       | 46.7  | 11.8 | 11.2 | 30.35 | 40.75 | 23.36 | 18.28 | 15.85 | 8.96 | 9.36 | 10.25 | 5.17 | 4.46 | 4.44  |
| FB237 2i,<br>1% | GNN-<br>QE | 34.81 | 5.40 | 5.17 | 30.12 | 48.88 | 23.06 | 12.65 | 9.85  | 5.26 | 4.26 | 12.5  | 4.43 | 0.71 | 1.98  |
|                 | BetaE      | 37.99 | 5.62 | 4.48 | 23.73 | 35.25 | 15.63 | 7.96  | 9.73  | 4.56 | 0.15 | 0.49  | 0.62 | 0.10 | 0.14  |







## Data Efficiency



• Average test MRR score (y-axis) of CQDA using *1% and 100%* of the training queries from FB15K-237 throughout the training iterations (x-axis).







## Summary

- We propose a novel method for Complex Query Answering
- The Method is able to answer complex EPFO queries
- We are able to obtain SOTA results on Complex query answering benchmarks
- The method show great generalization capabilities
  - data and parameter efficiency



## Thanks!

Paper: <u>Arxiv</u>

Chat with the paper

<u>Codebase</u>

Contact us:

<u>Erik Arakelyan</u> Dr. Pasquale Minervini









# Questions ?

