
Budgeting Counterfactual for Offline RL

Yao Liu¹, Pratik Chaudhari^{1,2}, Rasool Fakoor¹

¹Amazon, ²University of Pennsylvania

Why online RL fails in offline

Bellman backup: $Q(s, a) \leftarrow r(s, a) + \gamma \max Q(s', \overline{a})$

Variance in $Q(s', \overline{a}) =>$ Bias in the max

"Extrapolation error"

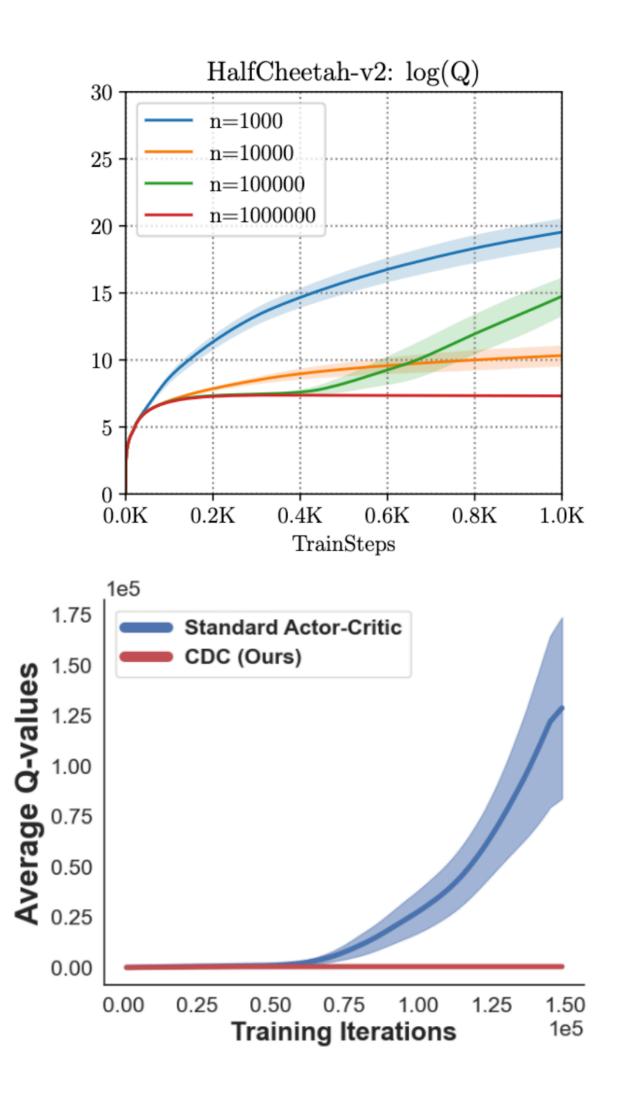
Revisit extrapolation error (EE)

• No EE if we always backup from behavior action:

$$Q(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{a' \sim \mu} Q(s')$$

• The EE comes from counterfactual arg max $Q(s', \overline{a})$, and it amplify itself by Bellman backup:

$$Q(s, a) \leftarrow TQ(s, a) := r(s, a) + \gamma \max_{\substack{a' \in A}} d_{a' \in A}$$


$$Q_k \leftarrow TQ_{k-1} \leftarrow T \circ TQ_{k-2} \leftarrow \dots \leftarrow$$

Empirically, EE was reported to increase nearly exponentially

', a')

 \overline{a}

 $\underset{\mathcal{A}}{\operatorname{ax}} Q(s',a')$

Budgeting Counterfactual

- **Observation 1**: Bellman backup with $\pi \neq \mu$ or max backup (counterfactual decisions) results in exponentially larger divergence $(1 + \delta)^H$.
- Observation 2: Controlling local divergence δ does not stop the exponential increase.

Key idea: only apply $Q(s, a) \leftarrow r(s, a) + \gamma \max Q(s', a')$ with <u>a limited</u>

<u>number</u> of steps in one trajectory. For the rest of decision steps use μ .

 $(a) + \gamma \max_{a' \in \mathscr{A}} Q(s', a')$ with <u>a limited</u> or the rest of decision steps use μ .

Budgeting Counterfactual

How to decide when to take the greedy action and when to take μ ?

Dynamic programming

$$TQ(s, b, a) := \mathbb{E}_{s, a, s', a'} \left[r(s, a) + \gamma \left\{ \begin{matrix} m \\ Q \end{matrix} \right. \right. \right]$$

where $(s, a, s', a') \in \mathcal{D}$.

 $\max\{\max_{\overline{a}\in\mathscr{A}}Q(s', b-1, \overline{a}), Q(s', b, a')\} \quad b > 0$ $Q(s', b, a') \qquad b = 0$

Theoretical justification

Theorem 1: There is a unique fixed point of T, that is

 $Q^{\star}(s,b,a) := \max_{\pi} E \left| \sum_{t=0}^{\infty} \gamma^{t} r_{t} \right| s_{0} =$ where $b_t = b_{t-1} - 1\{\pi(\cdot | s_{t-1}, b_{t-1}) \neq$

a constrain on the number of counterfactual decisions.

$$s, a_0 = a, b_0 = b; \pi$$
 s.t. $b_t \ge 0, \forall t \ge 0$
 $\ne \mu(\cdot | s_{t-1}) \}.$

• The fixed point iteration on T converge to the optimal value function under

Algorithm: BCOL

Continuous action space: $\pi_{\phi}(\cdot | s) \approx \arg \max$

 $\widehat{T}Q_{\theta}(s, b, a) := r(s, a) + \gamma \begin{cases} \max\{\mathbb{E}_{\overline{a}} \\ Q_{\theta}(s', b, a) \end{cases}$

Actor loss:
$$-\sum_{b=0}^{B} \mathbb{E}_{s \sim D, a \sim \pi_{\phi}(\cdot|s,b)} Q_{\theta}(s, b)$$

Critic loss:
$$\sum_{b=0}^{B} \mathbb{E}_{(s,a,s',a')\sim D} \left[\left(Q_{\theta}(s,b,a) - \hat{T}Q_{\overline{\theta}}(s,b,a) \right)^{2} \right]$$

$$\overline{a} \sim \pi_{\phi} Q_{\theta}(s', b - 1, \overline{a}), Q_{\theta}(s', b, a') \} \quad b > 0$$

$$, a') \qquad b = 0$$

b,a)

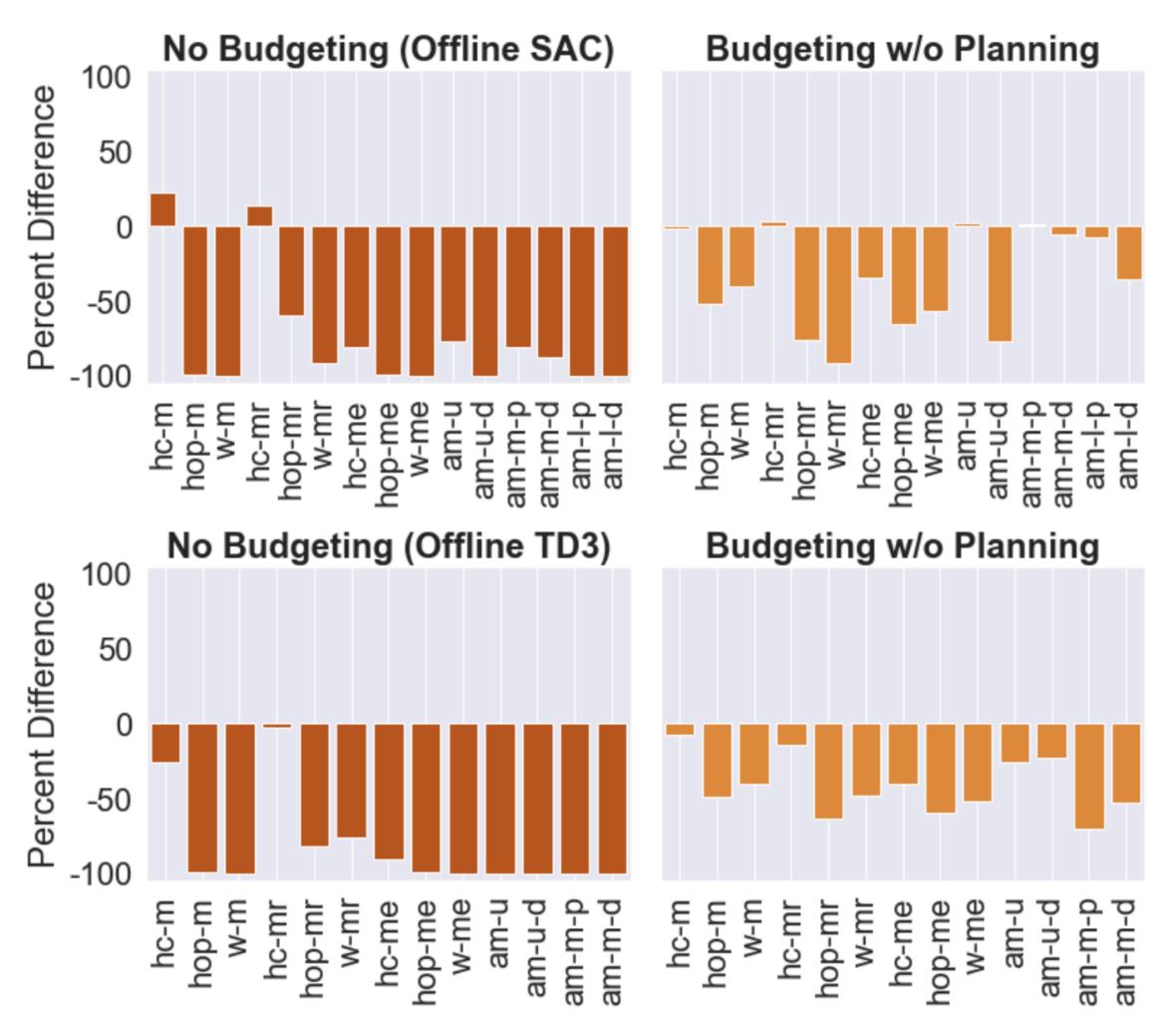
Inference

How to select the action at test-time based on π_{ϕ} and Q_{θ}

- $Q_{\theta}(s, b, a)$: the optimal value starting from (s, a), using at most b counterfactual decisions in the future.
- $\pi_{\phi}(\cdot | s, b)$: the optimal counterfactual decision given s and at most b counterfactual decisions in the future.

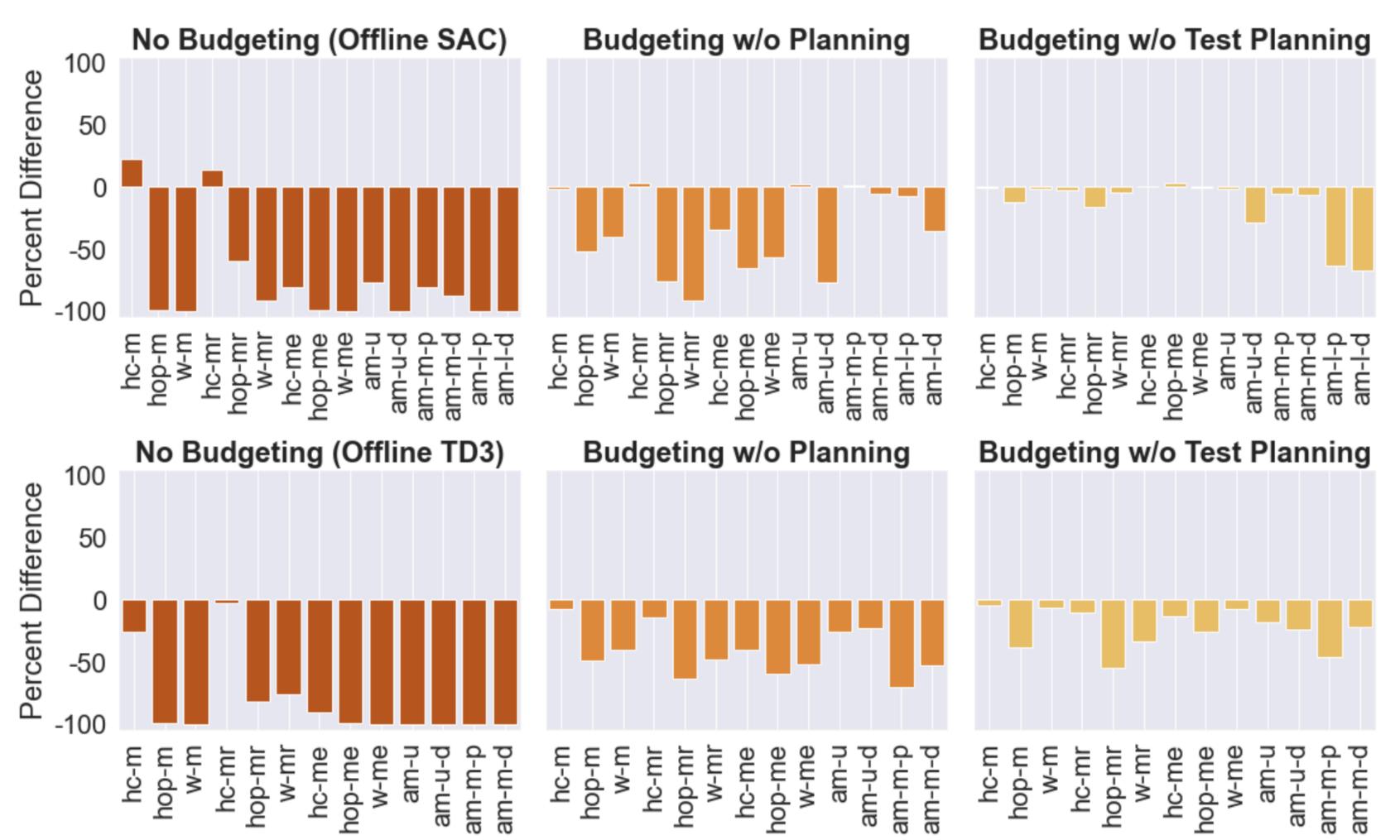
Initialize b = B, select action and update b by:

$$a \sim \mu(\cdot | s), b \leftarrow b \quad \text{if } \mathbb{E}_{\overline{a} \sim \pi(s,b)}Q(s, b - b)$$


 $a \sim \pi_{\phi}(\cdot | s, b), b \leftarrow b - 1$ otherwise

- $1,\overline{a}) \leq \mathbb{E}_{\overline{a} \sim \mu(s)}Q(s,b,\overline{a}) \text{ or } b = 0$

Results


Task Name	BC	IQL	Onestep	TD3+BC	BCOL (TD3)	CQL	CDC	BCOL (SAC)
halfcheetah-m	42.6	47.4	55.6	$\underline{48.4}$	45.0	46.1	<u>62.5</u>	50.1
hopper-m	52.9	66.3	83.3	59.4	<u>85.8</u>	64.6	84.9	83.2
walker2d-m	75.3	78.3	85.6	84.5	76.7	74.5	70.7	84.1
halfcheetah-mr	36.6	44.2	42.5	$\underline{44.4}$	40.9	45.4	$\underline{52.3}$	46.2
hopper-mr	18.1	94.7	71.0	50.1	$\underline{83.4}$	92.3	87.4	<u>99.8</u>
walker2d-mr	26.0	73.9	71.6	80.2	49.7	83.7	<u>87.8</u>	86.0
halfcheetah-me	55.2	86.7	93.5	91.5	88.7	87.3	66.3	86.9
hopper-me	52.5	91.5	102.1	100.5	106.8	$\underline{109.2}$	83.2	99.0
walker2d-me	107.5	109.6	110.9	<u>110.1</u>	108.5	109.9	103.9	<u>110.9</u>
antmaze-u	54.6	87.5	64.3	<u>96.3</u>	93.3	$\underline{94.0}$	93.6	90.3
antmaze-u-d	45.6	62.2	60.7	<u>71.7</u>	68.0	47.3	57.3	<u>90.0</u>
antmaze-m-p	0.0	71.2	0.3	1.7	$\underline{12.3}$	62.4	59.5	<u>70.0</u>
antmaze-m-d	0.0	70.0	0.0	0.3	$\underline{14.0}$	<u>74.3</u>	64.6	72.3
antmaze-l-p	0.0	39.6	0.0	0.0	0.0	34.2	33.0	$\underline{35.6}$
antmaze-l-d	0.0	47.5	0.0	0.3	0.0	40.7	25.3	37.6
mujoco total	466.7	692.4	716.0	669.2	685.6	713.0	699.0	746.0
antmaze total	100.2	378.0	125.3	171.3	<u>187.7</u>	352.9	333.5	<u>396.0</u>
Total	566.9	1070.4	841.3	840.2	873.3	1065.9	1032.5	1142.0

Dynamic programming matters

 With budget but randomly select where to spend the budget

Dynamic programming matters

- Train Q_{θ} and π_{ϕ} with budget
- Randomly select between π_{ϕ} and μ during test

Summary

- Offline RL suffers from extrapolation errors on counterfactual actions
- New algorithm: behavior cloning + few key counterfactual actions.
- Use dynamic programming to find where to do counterfactual decisions.
- No additional regularization, simple yet effective compared with SOTA offline RL methods.