

Robust Knowledge Transfer in Tiered Reinforcement Learning Jiawei Huang, Niao He Department of Computer Science, ETH Zurich

• Tiered RL Setting [1]

- Target/High-Tier task $M_{\rm Hi}$ + Source/Low-Tier task $M_{\rm Lo}$ learning in parallel
- Knowledge transfer from $M_{\rm Lo}$ to $M_{\rm Hi}$

Scenarios in Practice

- User Interaction Applications [1]
 - Users with higher risk tolerance:
 - Users with lower risk tolerance:

- Robotics
 - Multiple robots learning in parallel
 - Some are more vulnerable than others

Figure from [2]

- Regret(M_{Lo}): always near-optimal regret
 Source tasks are also important in many cases
- Regret($M_{\rm Hi}$):
 - If tasks are similar: better than optimal regret;
 - **Otherwise:** keep near-optimal

- Regret(*M*_{Lo}): always near-optimal regret Source tasks are also important in many cases
- Regret($M_{\rm Hi}$):
 - If tasks are similar: better than optimal regret;
 - Otherwise: keep near-optimal

Limitation of Existing Knowledge Transfer Frameworks

	Transfer RL	Multi-Task RL	Parallel Transfer RL (ours; [1])
Guarantees on low-tier/source task?	×		
Tasks learning in parallel?	×		
Distinguish high-tier/target and low- tier/source tasks?		×	

- Regret(M_{Lo}): always near-optimal regret
 Source tasks are also important in many cases
- Regret($M_{\rm Hi}$):
 - If tasks are similar: better than optimal regret;
 - **Otherwise:** keep near-optimal

Limitation of Existing Knowledge Transfer Frameworks

	Transfer RL	Multi-Task RL	Parallel Transfer RL (ours; [1])
Guarantees on low-tier/source task?	×		
Tasks learning in parallel?	×		
Distinguish high-tier/target and low- tier/source tasks?		×	

• Limitation of Existing Tiered RL Literature [1]

• Strong prior knowledge: $M_{\rm Hi} = M_{\rm Lo}$

Setting

- Tabular MDP with finite horizon *H*
- $M_{\rm Hi}$ shares state-action space with $M_{\rm Lo}$
- No prior knowledge about similarity between $M_{\rm Hi}$ and $M_{\rm Lo}$

Setting

- Tabular MDP with finite horizon *H*
- $M_{\rm Hi}$ shares state-action space with $M_{\rm Lo}$
- No prior knowledge about similarity between $M_{\rm Hi}$ and $M_{\rm Lo}$

Main Assumption

- Optimal Value Dominance:
 - $\forall h, s_h, V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h)$
 - Similar assumptions in [3,4]
 - Theorem 3.1 [Lower bound]: negative transfer is unavoidable if violated

Main Results

Bandit & RL Setting with Single Source Task

• Regret(
$$M_{\text{Hi}}, K$$
) = $O(SH \sum_{h} \sum_{s_h, a_h \notin \text{Transferable}(M_{\text{Hi}}, M_{\text{Lo}})} \frac{1}{\Delta(s_h, a_h) \vee \frac{\Delta_{\min}}{H}} \log K$)

Main Results

• Bandit & RL Setting with Single Source Task

Main Results

Bandit & RL Setting with Single Source Task

• Regret(
$$M_{\text{Hi}}, K$$
) = $O(SH \sum_{h} \sum_{s_{h}, a_{h} \notin \text{Transferable}(M_{\text{Hi}}, M_{\text{Lo}})} \frac{1}{\Delta(s_{h}, a_{h}) \vee \frac{\Delta_{\min}}{H}} \log K$)
Transferable states in single source task setting:
 $d_{\text{Lo}}^{*}(s_{h}) > 0;$
 $W_{\text{Lo}}^{*}(s_{h}) \leq W_{\text{Hi}}^{*}(s_{h}) + O\left(\frac{\widetilde{\Delta}}{H}\right);$
 $\pi_{\text{Lo}}^{*}(s_{h}) = \pi_{\text{Hi}}^{*}(s_{h})$

- Bandit & RL Setting with Multiple Source Tasks
 - W-Source Tasks: $M_{Lo}^1, \dots, M_{Lo}^W$

• Regret $(M_{\text{Hi}}, K) = O(SH \sum_{h} \sum_{s_h, a_h \notin \text{Transferable}(M_{\text{Hi}}, M_{\text{Lo}}^1, \dots, M_{\text{Lo}}^W)} \frac{1}{\Delta(s_h, a_h) \vee \frac{\Delta_{\min}}{H}} \log WK$)

Transferable states in single source task setting:

$$d_{Lo}^*(s_h) > 0;$$

 $\exists w \in [W] V_{Lo,w}^*(s_h) \le V_{Hi}^*(s_h) + O\left(\frac{\widetilde{\Delta}}{H}\right),$
 $\pi_{Lo,w}^*(s_h) = \pi_{Hi}^*(s_h)$

- Single Source Task Setting:
 - Key idea: separation between transferable & non-transferable states
 - If transferable: $V_{\text{Lo}}^*(s_h) \le V_{\text{Hi}}^*(s_h) + O\left(\frac{\tilde{\Delta}}{H}\right) = Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\tilde{\Delta}}{H}\right)$
 - Otherwise: $V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h) \ge Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) + O\left(\frac{H-1}{H}\Delta_{\text{Hi}}(s_h, \pi_{\text{Lo}}^*)\right)$

- Single Source Task Setting:
 - Key idea: separation between transferable & non-transferable states
 - If transferable: $V_{\text{Lo}}^*(s_h) \le V_{\text{Hi}}^*(s_h) + O\left(\frac{\tilde{\Delta}}{H}\right) = Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\tilde{\Delta}}{H}\right)$
 - Otherwise: $V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h) \ge Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) + O\left(\frac{H-1}{H}\Delta_{\text{Hi}}(s_h, \pi_{\text{Lo}}^*)\right)$
 - Checking condition:

•
$$Q_{\mathrm{Hi}}^*(s_h, \pi_{\mathrm{Lo}}^*) + O\left(\frac{\tilde{\Delta}}{H}\right) \ge V_{\mathrm{Lo}}^*(s_h)$$

- Single Source Task Setting:
 - Key idea: separation between transferable & non-transferable states
 - If transferable: $V_{\text{Lo}}^*(s_h) \le V_{\text{Hi}}^*(s_h) + O\left(\frac{\widetilde{\Delta}}{H}\right) = Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right)$
 - Otherwise: $V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h) \ge Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) + O\left(\frac{H-1}{H}\Delta_{\text{Hi}}(s_h, \pi_{\text{Lo}}^*)\right)$
 - Checking condition:

•
$$\overline{Q}_{\text{Hi}}^*(s_h, \underline{\pi}_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) \ge \underline{V}_{\text{Lo}}^*(s_h)$$

Estimated by UCB in M_{Hi} Estimated by LCB in M_{Lo}

- Single Source Task Setting:
 - Key idea: separation between transferable & non-transferable states
 - If transferable: $V_{\text{Lo}}^*(s_h) \le V_{\text{Hi}}^*(s_h) + O\left(\frac{\widetilde{\Delta}}{H}\right) = Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right)$
 - Otherwise: $V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h) \ge Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) + O\left(\frac{H-1}{H}\Delta_{\text{Hi}}(s_h, \pi_{\text{Lo}}^*)\right)$
 - Checking condition:

•
$$\overline{Q}_{\text{Hi}}^*(s_h, \underline{\pi}_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) \ge \underline{V}_{\text{Lo}}^*(s_h)$$

Estimated by UCB in M_{Hi} Estimated by LCB in M_{Lo}

- Avoid negative transfer
 - Every negative transfer will result in tighter estimation of $Q_{\rm Hi}^*$ and $V_{\rm Lo}^*$

- Single Source Task Setting:
 - Key idea: separation between transferable & non-transferable states
 - If transferable: $V_{\text{Lo}}^*(s_h) \le V_{\text{Hi}}^*(s_h) + O\left(\frac{\tilde{\Delta}}{H}\right) = Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\tilde{\Delta}}{H}\right)$
 - Otherwise: $V_{\text{Lo}}^*(s_h) \ge V_{\text{Hi}}^*(s_h) \ge Q_{\text{Hi}}^*(s_h, \pi_{\text{Lo}}^*) + O\left(\frac{\widetilde{\Delta}}{H}\right) + O\left(\frac{H-1}{H}\Delta_{\text{Hi}}(s_h, \pi_{\text{Lo}}^*)\right)$
 - Checking condition:

•
$$\overline{Q}_{\text{Hi}}^{*}(s_{h}, \underline{\pi}_{\text{Lo}}^{*}) + O\left(\frac{\widetilde{\Delta}}{H}\right) \ge \underline{V}_{\text{Lo}}^{*}(s_{h})$$

Estimated by UCB in M_{Hi} Estimated by LCB in M_{Lo} Estimation error tolerance

- Avoid negative transfer
 - Every negative transfer will result in tighter estimation of $Q_{\rm Hi}^*$ and $V_{\rm Lo}^*$

- Multiple Source Tasks Setting:
 - **New issue**: how to select transferable tasks from task set?
 - Solution: A novel task selection mechanism: "Trust till Failure"
 - For each state:
 - Maintain a feasible task set \mathcal{M}_{s_h}
 - Pick $M_{\text{Trust}} \in \mathcal{M}_{s_h}$ to trust until it is no longer feasible
 - When selecting the next task to trust:
 - Priorly select the feasible task recommending the same action

Experiments

- Setting
 - Toy tabular MDP example;
 - 5 source tasks at most;
 - Different tasks created by permuting transition matrix
- Results

ETH zürich

Thank you!

