Tanh Works Better with Asymmetry

Dongjin Kim^{1,3}, Woojeong Kim², Suhyun Kim³

¹Korea University, ²Cornell University, ³Korea Institute of Science and Technology

An activation function with two boundaries

\circ It has a saturation state.

The activation is close to the asymptotic value.

 The saturated output suffered from the vanishing gradients problem

 Due to poor performance, Tanh becomes forgotten.

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.

02 Motivation — Order of Batch Normalization

Batch Normalization(BN) places between the weight and activation function(AF).

02 Motivation **Order of Batch Normalization**

Batch Normalization(BN) places between the weight and activation function(AF).

Weight	Weight
BN	AF
AF	BN
Convention	Swap

order

order

ReLU

The layer order does not dramatically change accuracy.

Models

Datasets

ReLU

Swap

Convention

V: VGG16, M: MobileNet, PR: PreAct-ResNet

02 Motivation — Order of Batch Normalization

Batch Normalization(BN) places between the weight and activation function(AF).

order

order

Datasets	Models	ReLU		Tanh		
	Dutubets	in out is	Convention	Swap	Convention	Swap
		VGG16	93.69	93.04	91.75	92.90
	CIFAR-10	MobileNet	92.48	91.93	91.66	92.53
		PreAct-ResNet18	94.94	94.86	92.46	94.41
	CIFAR-100	VGG16	73.68	71.79	64.95	70.93
		MobileNet	70.27	69.49	64.50	70.39
		PreAct-ResNet18	78.06	77.39	73.26	75.76
	Tiny ImageNet Mo PreAct	VGG16	59.37	59.05	49.29	57.05
		MobileNet	51.90	50.25	45.38	52.05
		PreAct-ResNet34	67.28	66.21	59.06	64.94
	ImageNet	VGG16	73.83	72.95	60.85	67.04
		MobileNet	68.27	71.1	64.26	72.07

The layer order does not dramatically change accuracy.

Tanh

The Swap order significantly outperforms the Convention order.

V: VGG16, M: MobileNet, PR: PreAct-ResNet

02 Motivation — Order of Batch Normalization

			Datasets	Datasets Models	ReLU		Tanh	
					Convention	Swap	Convention	Swap
Datah Narmalizatian (DN)	Weight	Weight		VGG16	93.69	93.04	91.75	92.90
Batch Normalization(BN)			CIFAR-10	MobileNet	92.48	91.93	91.66	92.53
places between the weight	BN	AF		PreAct-Residents	94.94	94.80	92.40	94.41
and activation function(AF) .			CIFAR-100	VGG16 MobileNet	73.68 70.27	71.79 69.49	64.95 64.50	70.93 70.39

Goal

1. Reveal a hidden property

Why is the Swap order effective on Tanh?

2. Modified Activation Function

How can we redesign the order-agnostic Tanh with improved accuracy?

Tanh

The Swap order significantly outperforms the Convention order.

03 Intuition ——— Layer-wise Activations of Tanh

03 Intuition

Channel-wise Activation of Tanh

Channel-wise activation of the Swap order is asymmetrically distributed.

The Reason for Low Asymmetry in the Convention Order

 Batch Normalization shifts the biased weighted sum outputs to zero.

 In the Convention order, the zero mean distribution generates
symmetric activation on Tanh.

The Reason for Low Asymmetry in the Convention Order

What Brings Asymmetry in the Swap Order?

The elimination of the preceding Batch Normalization

The biased distribution to Tanh encourages asymmetric saturation in the Swap order.

Additional Improvement incurred by Asymmetry

The elimination of Batch Normalization before the Tanh

The biased distribution to Tanh encourages asymmetric saturation in the Swap order. Asymmetric saturation in the Swap order incurs sparsity

Asymmetric saturation incurs sparsity by a zero mean shifting in normalization.

The Effect of Asymmetry and Sparsity on Accuracy

Convention order

The Effect of Asymmetry and Sparsity on Accuracy

The shifted Tanh introduce asymmetric and sparse activation easily.

05 Extended Experiments — Shifted Tanh

The properties of the shifted Tanh

 It shows improved accuracy comparable with the ReLU model.

• The accuracy discrepancy between orders decreased.

05 Extended Experiments — Other Activation Functions

17

Other Bounded Activation Functions

- The Swap model with other bounded functions outperforms the Convention model.
- Softsign, which is a slower approach to its asymptotes than Tanh, underperforms Tanh on the Swap order, even if it performs better on the Convention order.

Activation functions	Order	•	Δ avg. Skewness		
	Convention	Swap	(Swap - Convention)		
Tanh	69.5	74.11	2.38		
Softsign	70.01	73.65	1.28		
LeCun Tanh	67.82	74.46	1.90		

Other Bounded Activation Functions

- The Swap model with other bounded functions outperforms the Convention model.
- Softsign, which is a slower approach to its asymptotes than Tanh, underperforms Tanh on the Swap order, even if it performs better on the Convention order.

Activation functions	Order	r	Δ avg. Skewness		
	Convention	Swap	(Swap - Convention)		
Tanh	69.5	74.11	2.38		
Softsign	70.01	73.65	1.28		
LeCun Tanh	67.82	74.46	1.90		

Dominance Between Asymmetry and Sparsity

 The NWDBN model with encouraged asymmetry outperforms the Convention model even if the sparsity is decreased.

Thank You!

npclinic3@gmail.com