Alternating Updates for Efficient Transformers

Cenk Baykal, Dylan Cutler, Nishanth Dikkala, Nikhil Ghosh*, Rina Panigrahy, Xin Wang

*UC Berkeley; work done as an intern at Google Research

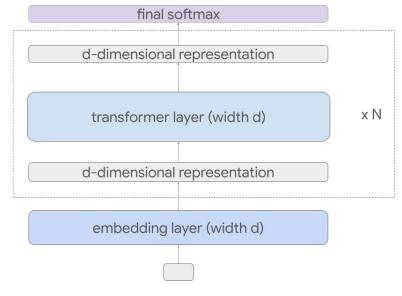
Transformers

Form the backbone of all state-of-the-art language models

• Bard, ChatGPT, LLaMA

What are they really doing?

- N layers, each layer with attention and FFN modules
- Iterative refinement of a token representation vector



A (decoder-only) transformer iteratively refines d-dimensional token representations across N layers

Transformers

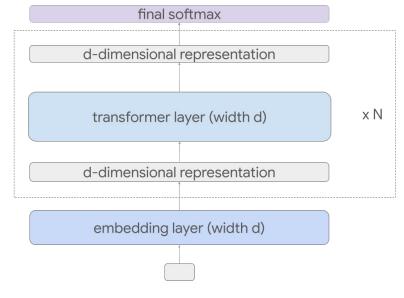
Form the backbone of all state-of-the-art language models

• Bard, ChatGPT, LLaMA

What are they really doing?

- N layers, each layer with attention and FFN modules
- Iterative refinement of a token representation vector

Number of parameters in each layer scales with the representation vector dimension (*representation width*)



A (decoder-only) transformer iteratively refines d-dimensional token representations across N layers

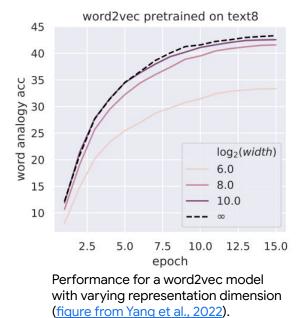
Increasing capacity by increasing representation dimension (d)

Improves performance

- Allows packing more information into representation vector
- Scaling laws (more parameters)
- Enables learning more complicated functions

... at the cost of quadratic increase in parameters and compute

• FFNs in each layer contain O(d^2) parameters



Increasing capacity by increasing representation dimension (d)

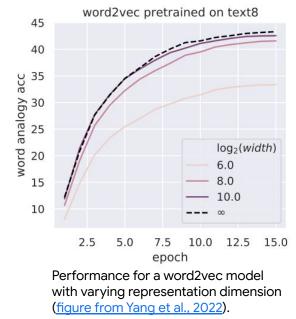
Improves performance

- Allows packing more information into representation vector
- Scaling laws (more parameters)
- Enables learning more complicated functions

... at the cost of quadratic increase in parameters and compute

• FFNs in each layer contain O(d^2) parameters

Can we get the benefits of increased representation dimension without the full computational cost?



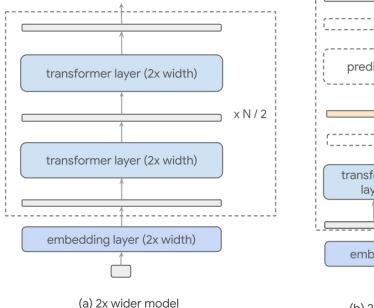
Alternating Updates (AltUp)

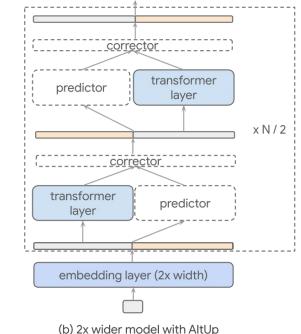
Increase representation width, but keep *transformer layer constant*

Activate a *sub-block* of the representation in each layer

Use *lightweight* predict-and-correct to update inactivated blocks

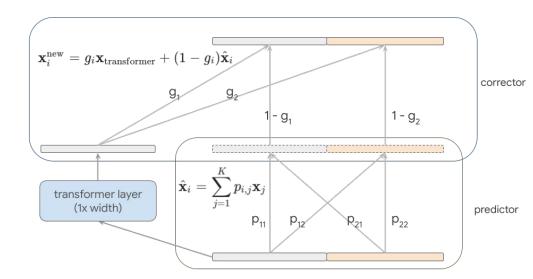
Generalizes to K >= 2 blocks





Predict-and-Correct

Two lightweight components with a total of $K^2 + K$ trainable parameters per layer*



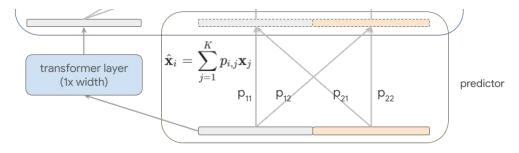
An example of the predict-and-correct step with K = 2. All depicted parameters in the predictor and corrector are trainable scalars.

Predict-and-Correct

Two lightweight components with a total of $K^2 + K$ trainable parameters per layer*

Prediction: O(K^2 * d) time

- Each block is a weighted mixture of blocks
- Enables information passing across blocks



An example of the predict-and-correct step with K = 2. All depicted parameters in the predictor and corrector are trainable scalars.

Predict-and-Correct

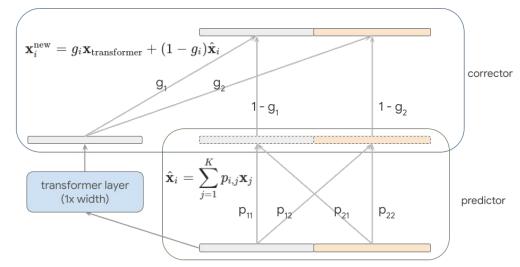
Two lightweight components with a total of $K^2 + K$ trainable parameters per layer*

Prediction: O(K² * d) time

- Each block is a weighted mixture of blocks
- Enables information passing across blocks

Correction: O(K * d) time

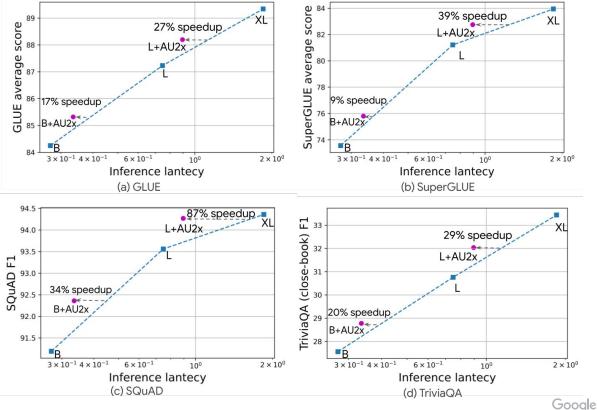
• Update blocks based on observed output of the activated block



An example of the predict-and-correct step with K = 2. All depicted parameters in the predictor and corrector are trainable scalars.

Evaluations on T5: up to 87% speedup relative to dense baselines

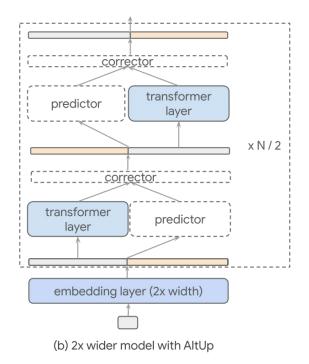
We set K = 2 by default. No hyperparameter tuning required!



AltUp: a conditional computation technique

Conditional computation along the representation dimension

- Same underpinning as Mixture of Experts (MoE) models
- Shifts parameters from backbone to embedding table
- Orthogonal to existing conditional computation approaches ⇒ Synergistic combination

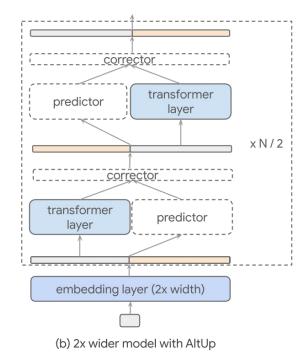


Synergistic combination with existing approaches

Conditional computation along the representation dimension

- Same underpinning as Mixture of Experts (MoE) models
- Shifts parameters from backbone to embedding table
- Orthogonal to existing conditional computation approaches ⇒ Synergistic combination

Method	T5 Small	T5 Base	T5 Large
Baseline	59.10	63.35	65.58
MoE [60]	59.42	63.62	65.71
AltUp (K=2)	59.67	63.97	65.73
AltUp (K=2) + MoE	59.91	64.13	65.95

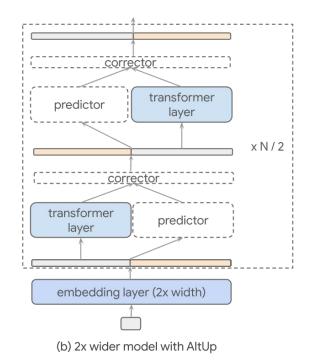


Scaling with expansion factor K

AltUp with expansion factor K on model with vocab size V

- adds O(V(K-1)d) embedding table parameters
- final linear + softmax computation: $O(Vd) \rightarrow O(VKd)$ not significant for large models with many layers and moderate-sized vocabularies

What if the vocabulary is relatively very large? Use Recycled-AltUp!



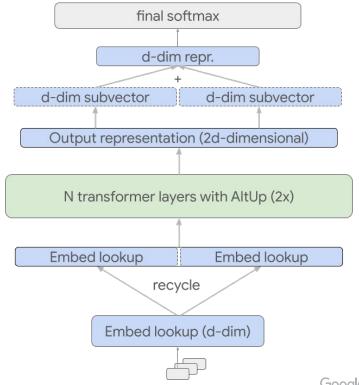
Recycled-AltUp: Lightweight extension of AltUp

Recycles a single embedding lookup (no expansion of table) Projects down efficiently before final softmax

⇒ embedding table parameters: $O(Vd) \rightarrow O(Vd)$ (constant)

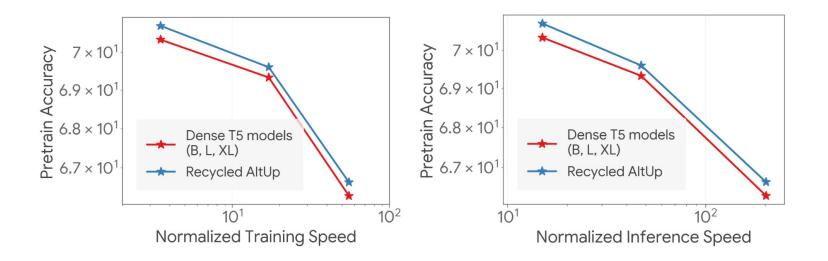
⇒ final linear + softmax computation: $O(Vd) \rightarrow O(Vd)$ (constant)

Ideal for models with relatively large vocabularies



Recycled-AltUp Evaluations

O(100) **total** parameters added Improved performance at the cost of virtually no slowdown



Alternating Updates for Efficient Transformers

Cenk Baykal, Dylan Cutler, Nishanth Dikkala, Nikhil Ghosh*, Rina Panigrahy, Xin Wang

*UC Berkeley; work done as an intern at Google Research