

Uncertainty-Aware Instance Reweighting for Off-Policy Learning

Xiaoying Zhang, Junpu Chen, Hongning Wang, Hong Xie, Yang Liu, John C.S. Lui, Hang Li

Background : Off-Policy Learning

Input: A logged dataset $D = \{(x_n, a_n, r_{x_n, a_n})\}_{n=1}^N$ generated by logging policy $\beta^*(a|x)$.

Goal: Learning a policy $\pi(a|x)$ that maximize

$$V(\pi) = E_{\pi}[r_{x,a}] = E_{\beta^*}[\frac{\pi(a|x)}{\beta^*(a|x)}r_{x,a}]$$

Inverse Propensity Score (IPS)

$$\widehat{V}_{IPS}(\pi) = \frac{1}{N} \sum_{n=1}^{N} \frac{\pi(a_n | x_n)}{\beta^*(a_n | x_n)} r_{x_n, a_n}$$

Approximation when β^* is unknown \rightarrow BIPS

• In practice, β^* is usually unknown and approximated by its estimate β .

$$\widehat{V}_{BIPS}(\pi) = \frac{1}{N} \sum_{n=1}^{N} \frac{\pi(a_n | x_n)}{\widehat{\beta}(a_n | x_n)} r_{x_n, a_n}$$

BIPS suffers high bias and variance with inaccurate $\hat{\beta}$

- Theoretically, inaccurate and small $\hat{\beta}(a|x) \rightarrow$ high bias and variance of \hat{V}_{BIPS} .
- However, smaller $\hat{\beta}(a|x) \rightarrow$ more likely to be inaccurate (i.e., high uncertainty in estimation).

Uncertainty-Aware Off-Policy Learning (UIPS)

$$\hat{V}_{UIPS}(\pi_{\vartheta}) = \frac{1}{N} \sum_{n=1}^{N} \frac{\pi_{\vartheta}(a_n | x_n)}{\hat{\beta}(a_n | x_n)} \cdot \frac{\phi_{x_n, a_n}}{\phi_{x_n, a_n}} \cdot r_{x_n, a_n}$$

Per-sample weight $\phi_{x,a}$: small value when $\hat{\beta}(a|x)$ is small and far from $\beta^*(a|x)$.

Iterate between two steps

Step 1: Deriving Optimal $\phi_{x,a}^*$: $\hat{V}_{UIPS}(\pi_{\vartheta}) \to V(\pi_{\vartheta})$

Minimize the upper bound of Mean Square Error (MSE) of $\hat{V}_{UIPS}(\pi_{\vartheta})$ to its ground-truth $V(\pi_{\vartheta}) \rightarrow$ Persample optimization:

$$\min_{\phi_{x,a}} \lambda \left(\frac{\beta^*(a|x)}{\hat{\beta}(a|x)} \phi_{x,a} - 1 \right)^2 + \frac{\pi_{\vartheta}(a|x)^2}{\hat{\beta}(a|x)^2} \phi_{x,a}^2$$

Direct optimization is infeasible due to the unknown $\beta^*(a|x)$, but uncertainty estimation provides its confidence interval $\beta^*(a|x) \in B_{x,a}$:

$$\min_{\phi_{x,a}} \max_{\beta_{x,a}} \lambda \left(\frac{\beta_{x,a}}{\hat{\beta}(a|x)} \phi_{x,a} - 1 \right)^2 + \frac{\pi_{\vartheta}(a|x)^2}{\hat{\beta}(a|x)^2} \phi_{x,a}^2$$

Closed-form solution of $\phi_{x,a}^*$!

Step 2: Policy Improvement:

 \rightarrow

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\pi_{\vartheta}(a_n | x_n)}{\beta^*(a_n | x_n)} \cdot \phi_{x_n, a_n}^* \cdot r_{x_n, a_n} \nabla_{\vartheta} \log(\pi_{\vartheta}(a_n | x_n))$$

 $\frac{\text{Alg}}{\tau}$

BIP

O Theoretical Convergence of UIPS

UIPS converges to a stationary point where the true policy gradient is zero, while convergence of policy learning under BIPS is not guaranteed!

(O) Empirical Results

Improved performance on both synthetic datasets and three unbiased recommendation datasets.

		100 J 10 J 10 J							
	Yahoo			Coat			KuaiRec		
orithm	P@5	R@5	NDCG@5	P@5	R@5	NDCG@5	P@50	R@50	NDCG@50
CE	$0.2819 \pm 2e^{-3}$	$0.7594 \pm 6e^{-3}$	$0.6073 \pm 7e^{-3}$	$0.2799 \pm 5e^{-3}$	$0.4618 \pm 1e^{-2}$	$0.4529 \pm 7e^{-3}$	$0.8802 \pm 2e^{-3}$	$0.0240 \pm 8e^{-5}$	$0.8810 \pm 6e^{-3}$
PS-Cap	$0.2808 \pm 2e^{-3}$	$0.7576 \pm 5e^{-3}$	$0.6099 \pm 8e^{-3}$	$0.2758 \pm 6e^{-3}$	$0.4582 \pm 7e^{-3}$	$0.4399 \pm 9e^{-3}$	$0.8750 \pm 3e^{-3}$	$0.0238 \pm 7e^{-5}$	$0.8788 \pm 5e^{-3}$
inVar	$0.2843 \pm 4e^{-3}$	$0.7685 \pm 1e^{-2}$	$0.6168 \pm 1e^{-2}$	$0.2813 \pm 3e^{-3}$	$0.4668 \pm 9e^{-3}$	$0.4414 \pm 8e^{-3}$	$0.8827 \pm 1e^{-3}$	$0.0240 \pm 5e^{-5}$	$0.8886 \pm 2e^{-3}$
bleVar	$0.2787 \pm 2e^{-3}$	$0.7499 \pm 7e^{-3}$	$0.5919 \pm 7e^{-3}$	$0.2840 \pm 3e^{-3}$	$0.4662 \pm 5e^{-3}$	$0.4393 \pm 7e^{-3}$	$0.8524 \pm 7e^{-3}$	$0.0231 \pm 2e^{-4}$	$0.8570 \pm 4e^{-3}$
inkage	$0.2843 \pm 3e^{-3}$	$0.7654 \pm 8e^{-3}$	$0.6204 \pm 7e^{-3}$	$0.2790 \pm 5e^{-3}$	$0.4636 \pm 4e^{-3}$	$0.4464 \pm 1e^{-2}$	$0.8744 \pm 3e^{-3}$	$0.0238 \pm 9e^{-5}$	$0.8771 \pm 6e^{-3}$
NIPS	$0.2222 \pm 4e^{-3}$	$0.5828 \pm 1e^{-2}$	$0.4357 \pm 1e^{-2}$	$0.2643 \pm 7e^{-3}$	$0.4287 \pm 1e^{-2}$	$0.4009 \pm 9e^{-3}$	$0.8411 \pm 6e^{-3}$	$0.0228 \pm 2e^{-4}$	$0.8431 \pm 6e^{-3}$
nditNet	$0.2413 \pm 8e^{-3}$	$0.6442 \pm 2e^{-2}$	$0.4988 \pm 2e^{-2}$	$0.2781 \pm 8e^{-3}$	$0.4527 \pm 1e^{-2}$	$0.4251 \pm 1e^{-2}$	$0.8758 \pm 5e^{-3}$	$0.0239 \pm 2e^{-4}$	$0.8810 \pm 4e^{-3}$
OEM	$0.2732 \pm 3e^{-3}$	$0.7357 \pm 1e^{-2}$	$0.5880 \pm 1e^{-2}$	$0.2791 \pm 4e^{-3}$	$0.4566 \pm 6e^{-3}$	$0.4375 \pm 6e^{-3}$	$0.7785 \pm 1e^{-2}$	$0.0210 \pm 2e^{-4}$	$0.7779 \pm 6e^{-3}$
OXM	$0.2250 \pm 5e^{-3}$	$0.5940 \pm 1e^{-2}$	$0.4542 \pm 2e^{-2}$	$0.2663 \pm 6e^{-3}$	$0.4308 \pm 9e^{-3}$	$0.4006{\pm}1e^{-2}$	$0.8962 \pm 1e^{-2}$	$0.0245 \pm 4e^{-4}$	$0.9041 \pm 1e^{-2}$
aptive	$0.2762 \pm 3e^{-3}$	$0.7451 \pm 9e^{-3}$	$0.5919{\pm}8e^{-3}$	$0.2830 \pm 3e^{-3}$	$0.4634 \pm 5e^{-3}$	$0.4217 \pm 5e^{-3}$	$0.8375 \pm 1e^{-2}$	$0.0227 \pm 4e^{-4}$	$0.8460 \pm 1e^{-2}$
oxKNN	$0.2697 \pm 2e^{-3}$	$0.7225 \pm 5e^{-3}$	$0.5760 \pm 6e^{-3}$	$0.2755 \pm 2e^{-3}$	$0.4594 \pm 5e^{-3}$	$0.4490 \pm 4e^{-3}$	$0.8839 \pm 2e^{-6}$	$0.0240 \pm 5e^{-5}$	$0.8895 \pm 2e^{-3}$
-C-TS	$0.2816 \pm 2e^{-3}$	$0.7582{\pm}5e^{-3}$	$0.6114 \pm 5e^{-3}$	$0.2799 \pm 3e^{-3}$	$0.4625 \pm 7e^{-3}$	$0.4462 \pm 6e^{-3}$	$0.8781 \pm 3e^{-3}$	$0.0239 \pm 1e^{-4}$	$0.8749 \pm 3e^{-3}$
IPS-P	$0.1829 \pm 8e^{-3}$	$0.4560 \pm 3e^{-2}$	$0.3300 \pm 1e^{-2}$	$0.2685 \pm 7e^{-3}$	$0.4364 \pm 9e^{-3}$	$0.4087 \pm 7e^{-3}$	$0.8638 \pm 8e^{-3}$	$0.0235 \pm 3e^{-4}$	$0.8685 \pm 7e^{-3}$
PS-O	$0.1947 \pm 3e^{-3}$	$0.4959 \pm 1e^{-2}$	$0.3600 \pm 8e^{-3}$	$0.2657 \pm 5e^{-3}$	$0.4306 \pm 9e^{-3}$	$0.4146 \pm 9e^{-3}$	$0.8651{\pm}8e^{-3}$	$0.0235{\pm}2e^{-4}$	$0.8697 \pm 7e^{-3}$
JIPS	$0.2868 \pm 2e^{-3}$	$0.7742 \pm 5e^{-3}$	$0.6274 \pm 5e^{-3}$	$0.2877 \pm 3e^{-3}$	$0.4757 \pm 5e^{-3}$	$0.4576 \pm 8e^{-3}$	$0.9120 \pm 1e^{-3}$	$0.0250 \pm 5e^{-5}$	$0.9174 \pm 7e^{-4}$
value	$4e^{-2}$	$1e^{-2}$	$3e^{-2}$	$2e^{-2}$	$6e^{-4}$	$5e^{-5}$	$6e^{-4}$	$6e^{-4}$	$1e^{-3}$

More accurate Off-policy Evaluation

Table 3: MSE of different off-policy estimators. A lower MSE indicates a more accurate estimator.

Algorithm	IPS-GT	BIPS	minVar	stableVar	Shrinage	UIPS
au = 0.5	$0.0875 \pm 4e^{-4}$	15.786 ± 1.51	$0.9021{\pm}7e^{-13}$	$0.8612 \pm 5e^{-8}$	$0.0718{\pm}5e^{-6}$	$0.0210 \pm 2e^{-6}$
$\tau = 1.0$	$0.0209 {\pm} 8e^{-5}$	$0.5510{\pm}0.388$	$0.9019{\pm}8e^{-12}$	$0.8578{\pm}2e^{-7}$	$0.1978 {\pm} 2e^{-5}$	$0.0093 \pm 1e^{-6}$
au = 2.0	$0.0020 {\pm} 6e^{-6}$	$0.5669 {\pm} 0.013$	$0.9015 {\pm} 5e^{-15}$	$0.8342 \pm 5e^{-7}$	$0.2952 \pm 3e^{-5}$	$0.0043 \pm 4e^{-7}$

> Performance under different uncertainties

• the only off-policy algorithm that outperforms CE on test samples with high uncertainty.

	Actions on S	Samples with High	Uncertainty	Actions on Samples with Low Uncertainty			
orithm	P@5(RI)	R@5(RI)	NDCG@5(RI)	P@5(RI)	R@5(RI)	NDCG@5(RI)	
E	0.5190	0.1231	0.5526	0.5913	0.1915	0.6549	
S-Cap	0.5117 (-1.41%)	0.1202 (-2.33%)	0.5488 (-0.68%)	0.5913 (+0.00%)	0.1903 (-0.64%)	0.6574 (+0.39%)	
nkage	0.5158 (-0.62%)	0.1217 (-1.11%)	0.5505 (-0.37%)	0.5892 (-0.35%)	0.1905 (-0.55%)	0.6546 (-0.05%)	
IPS	0.5222 (+0.61%)	0.1237 (+0.50%)	0.5568 (+0.77%)	0.5994 (+1.38%)	0.1940 (+1.28%)	0.6658 (+1.66%)	