

Going Beyond Persistent Homology Using Persistent Homology

Johanna Immonen

University of Helsinki

Amauri Souza

Aalto University Federal Institute of Ceará

Vikas Garg

Aalto University YaiYai Ltd

Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS 2023)

Persistent homology (PH)

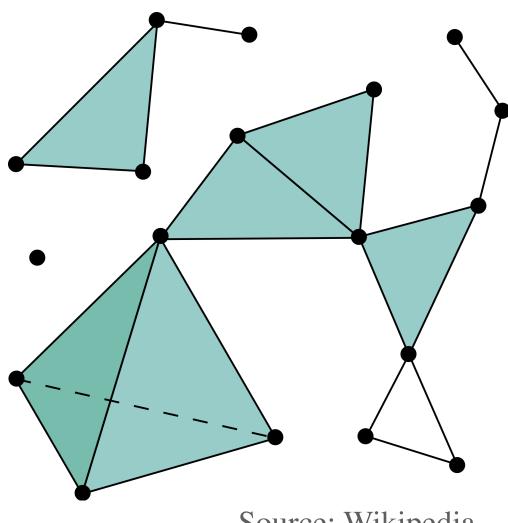
An approach to extract detailed topological features (e.g., persistence of connected components or cycles) of simplicial complexes (e.g., graphs).

Basic idea:

- 1) Obtain a **filtration** (i.e., sequence of sub-complexes) by applying a filtering function on simplices (elements of the original complex);
- Keep track of the appearance (birth) and disappearance (death) of topological features, obtaining the so-called persistence diagrams.

Among other applications, PH has been successfully employed as a feature extractor in many disciplines, such as Astrophysics, Computer Vision, and Bioinformatics.

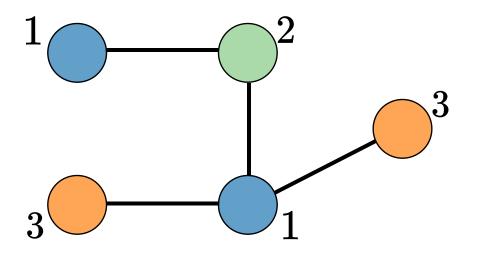
A simplicial complex.



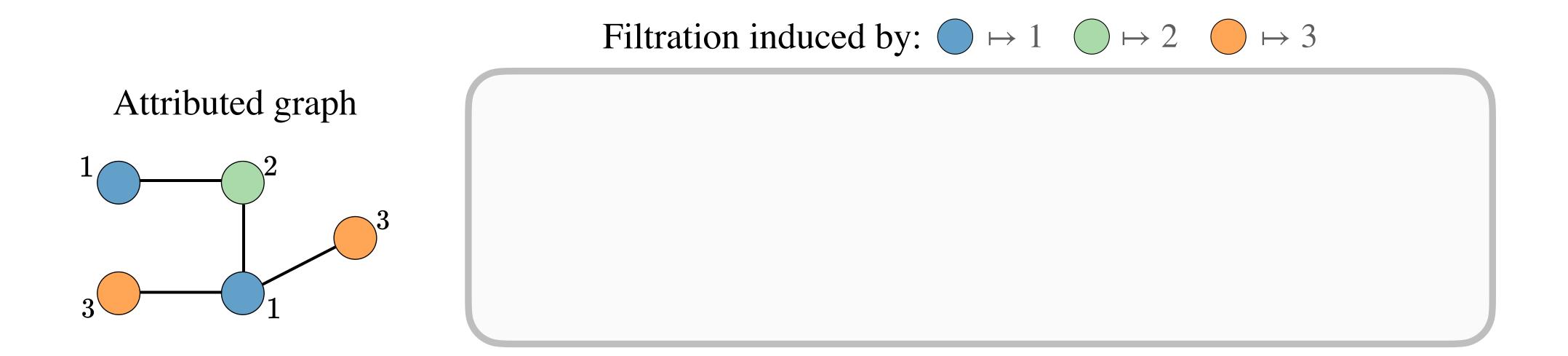
Colors/features

Vertex-color Filtrations: Nested sequence of subgraphs $\emptyset = G^{(0)} \subseteq G^{(1)} \subseteq ... \subseteq G$ induced by $f: X \to (0, \infty)$

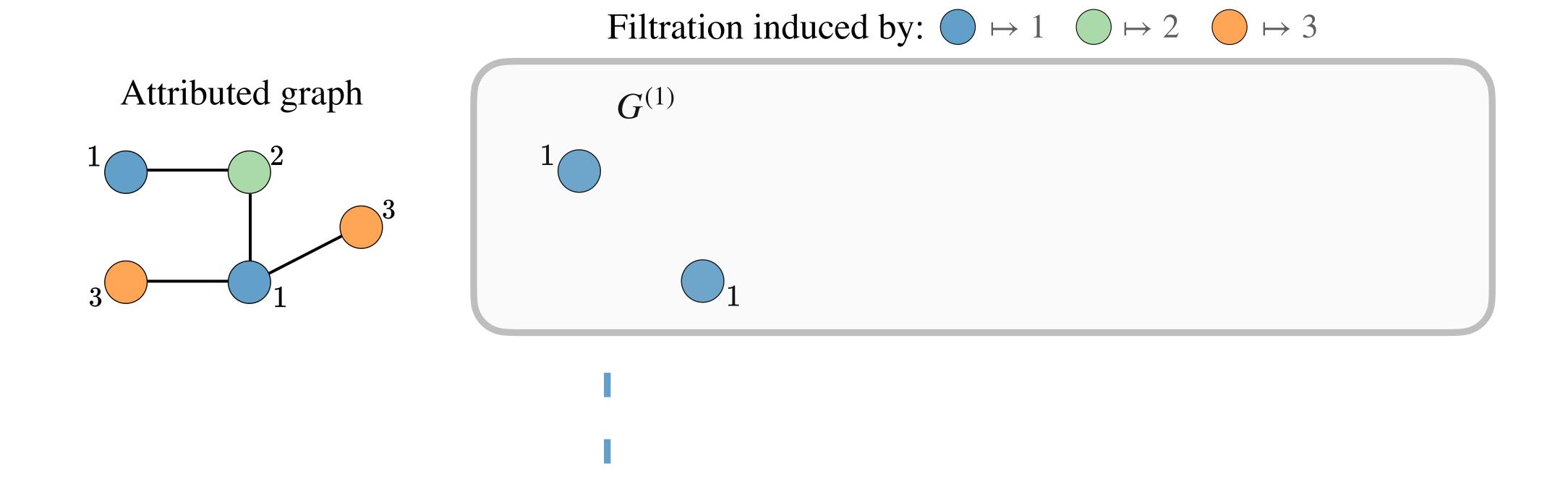
Attributed graph



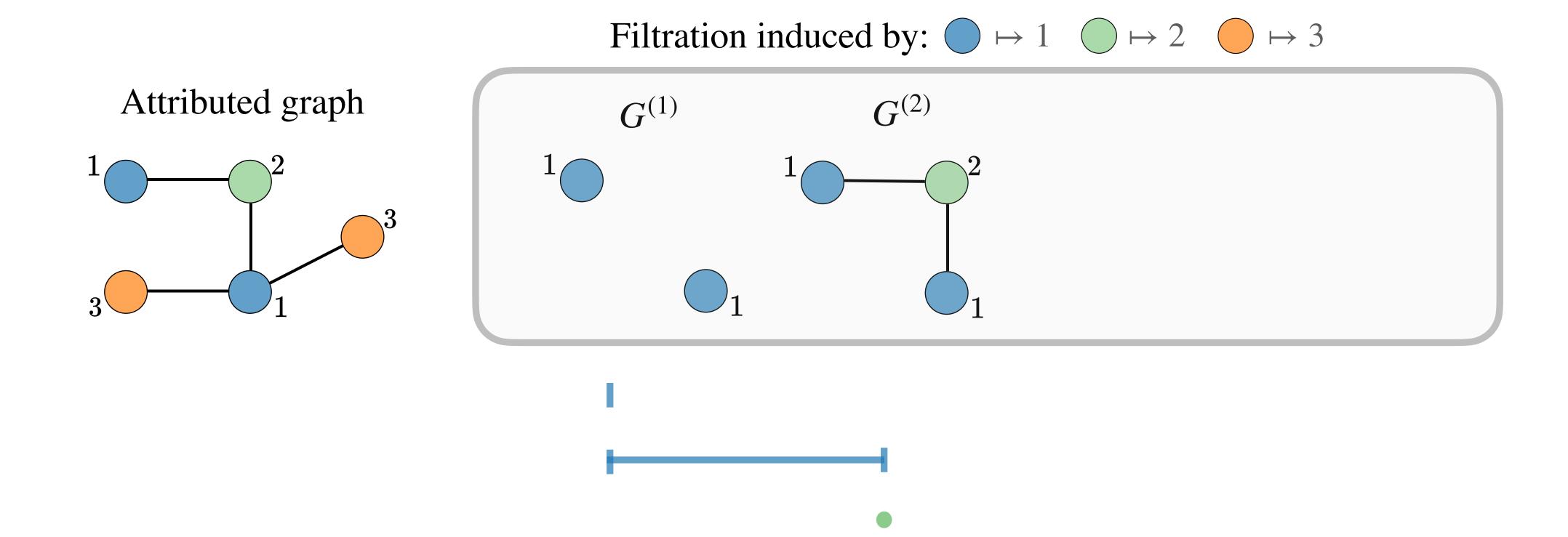
Colors/features



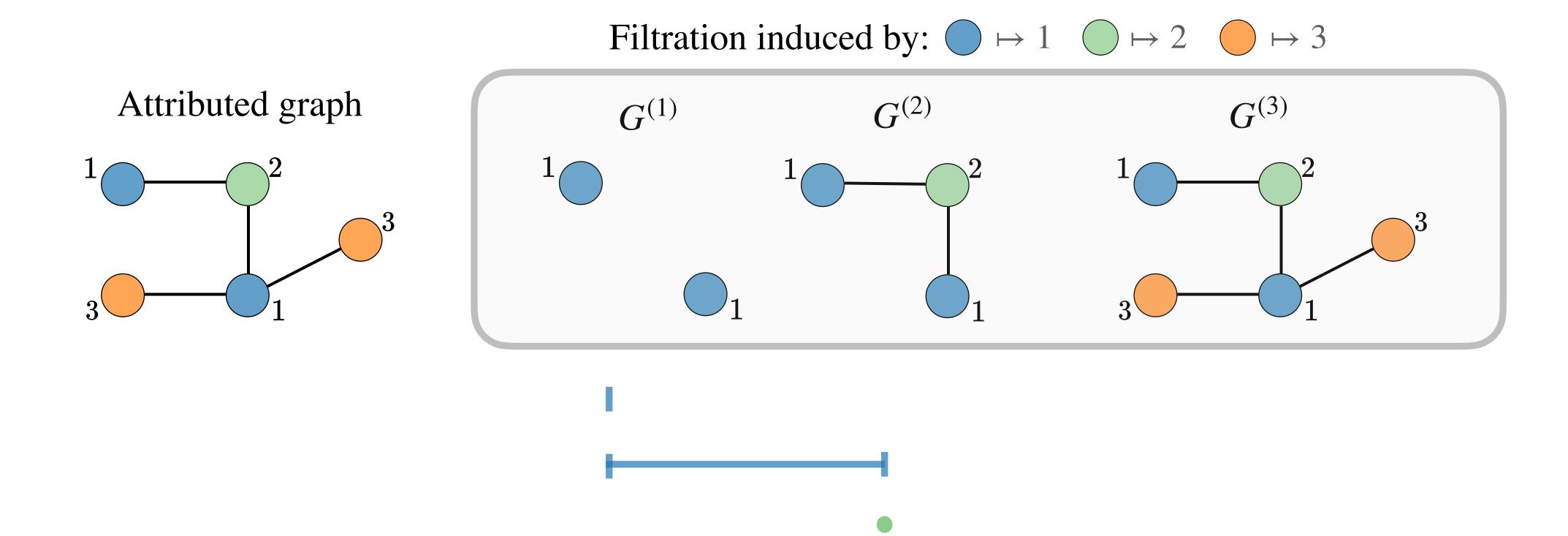
Colors/features



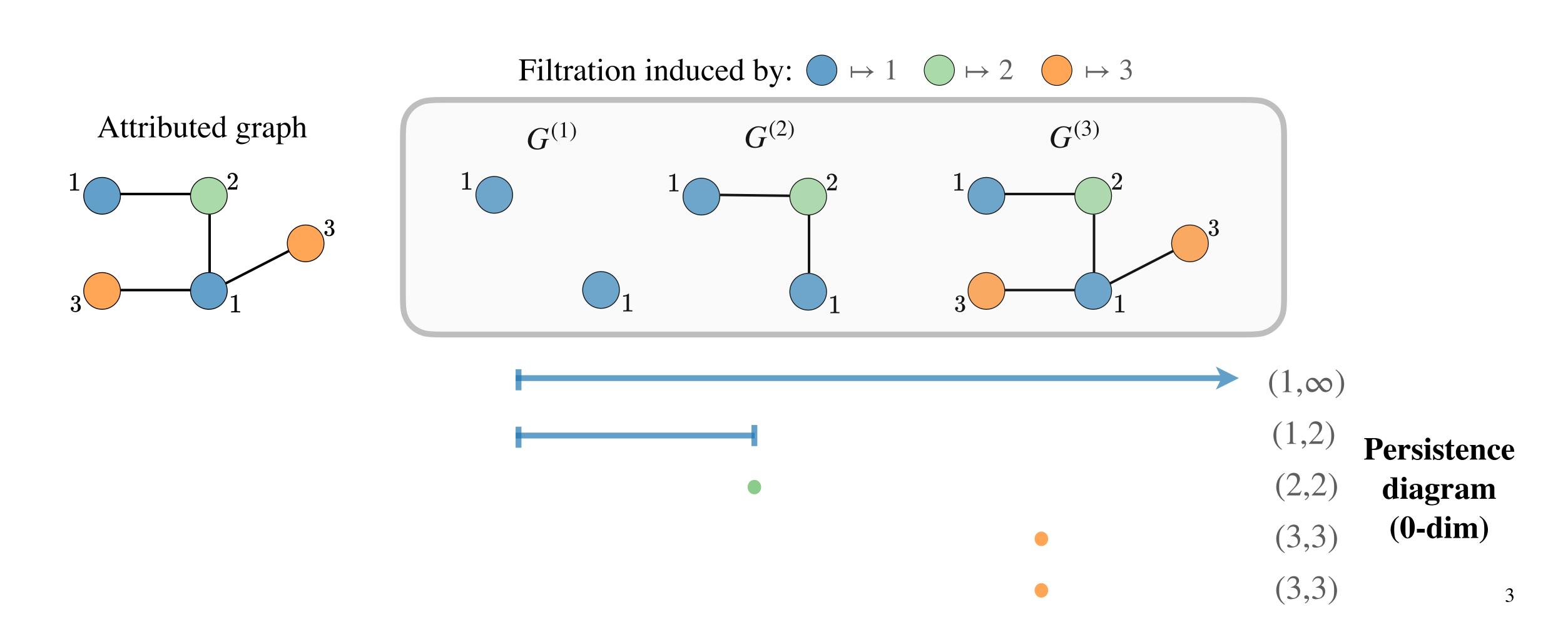
Colors/features



Colors/features

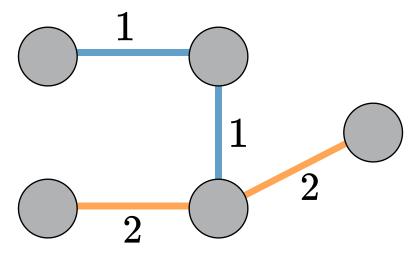


Colors/features



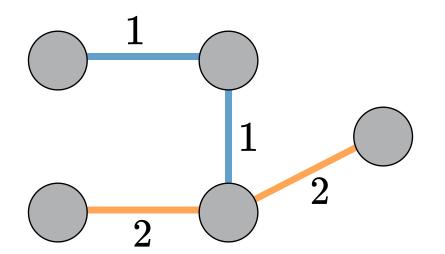
Edge-color Filtrations

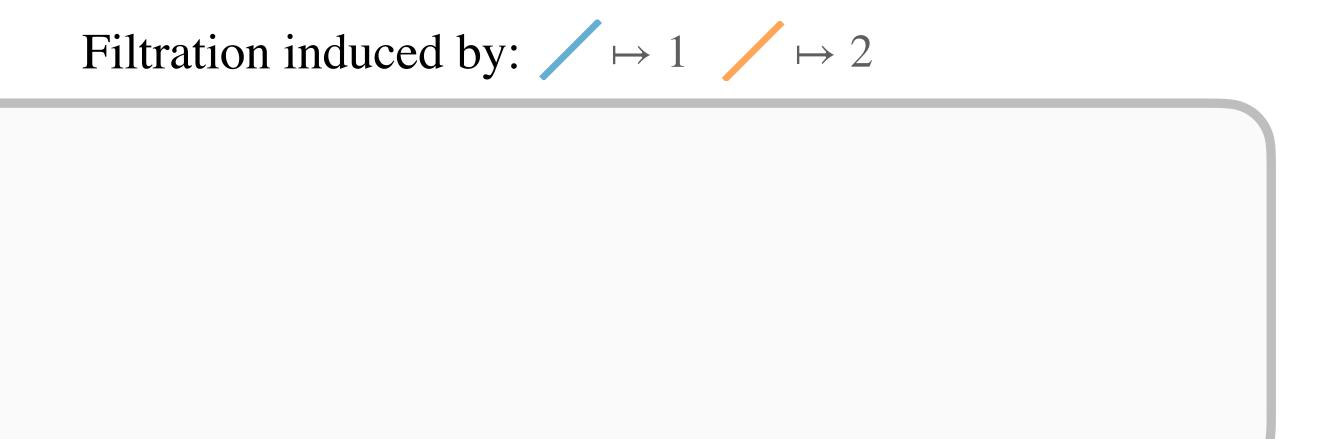
Edge-colored graph



Edge-color Filtrations

Edge-colored graph

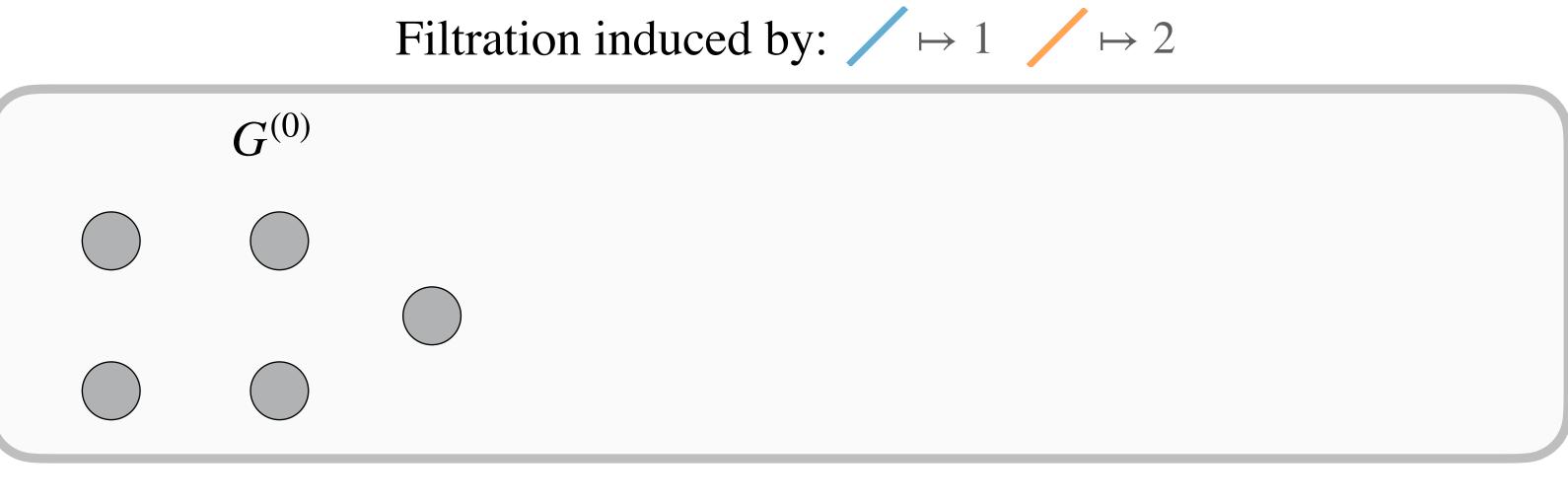




Edge-color Filtrations

Edge-colored graph

1
2



Edge-color Filtrations

Filtration induced by: $\longrightarrow 1 \longrightarrow 2$ Edge-colored graph $G^{(0)}$ $G^{(1)}$

Edge-color Filtrations

Edge-colored graph $G^{(0)}$ $G^{(1)}$ $G^{(2)}$ $G^{(2)}$

Motivation

Persistent homology has been used to boost the predictive capabilities of graph neural networks (GNNs).

However, while the expressivity of GNNs is well-understood (e.g., in terms of the Weisfeiler-Leman test), the theoretical underpinnings of PH on graphs is less explored.

In this work, we want to answer two fundamental open questions:

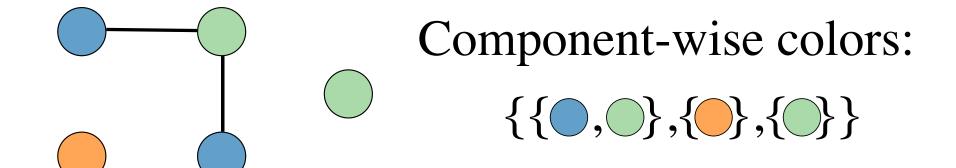
Q1: What is the expressive power of persistent homology (from vertex-color filtrations) on graphs?

Q2: Can we design more expressive persistence diagrams?

What is the expressive power of persistent homology on graphs?

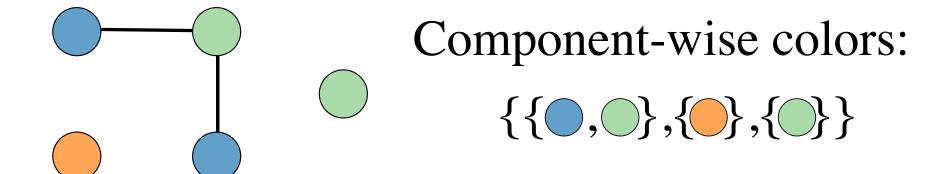
An important notion: color-separating sets

Component-wise colors: The multiset comprising the set of colors of each connected component.



An important notion: color-separating sets

Component-wise colors: The multiset comprising the set of colors of each connected component.

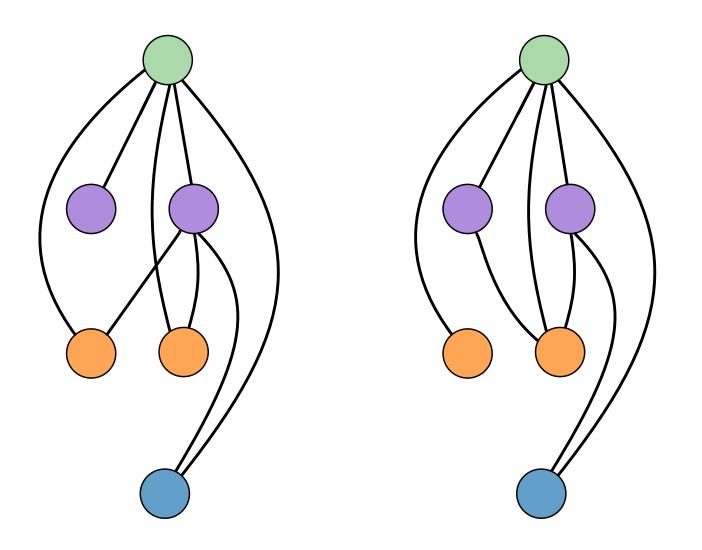


A color-separating set for a pair of graphs (G, G') is a set of colors Q such that, if we remove Q from G and G', we obtain subgraphs with **distinct component-wise colors**.

Thus, { ,) is a color-separating set!

Theorem 1: On the power of vertex-color filtrations

We can obtain different vertex-color (0-dim) diagrams if and only if there is a color-separating set.



Can PH based on vertex-color filtrations distinguish these graphs?

Yes!!{(•,•)} is a color-separating set!

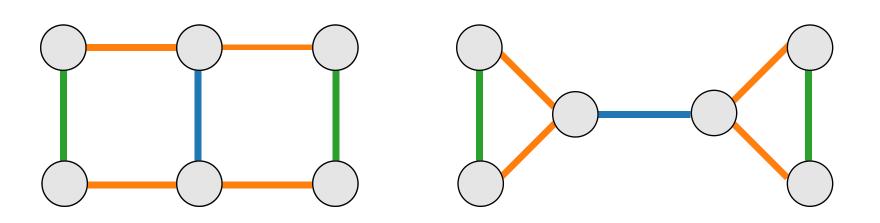
Another important notion: color-disconnecting sets

A color-disconnecting set for a pair of graphs (G, G') is a set of colors Q such that, if we remove edges of colors Q from G and G', we obtain subgraphs with different number of connected components.

Thus, $Q = \{blue\}$ is a color-disconnecting set!

Theorem 2: On the power of edge-color filtrations

We can obtain different edge-color (0-dim) diagrams if and only if there is a color-disconnecting set.

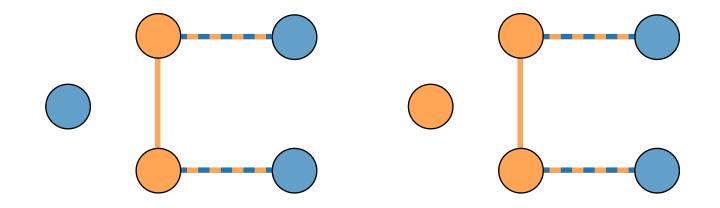


Can PH based on edge-color filtrations distinguish these graphs?

Yes!! $Q = \{blue\}$ is a color-disconnecting set!

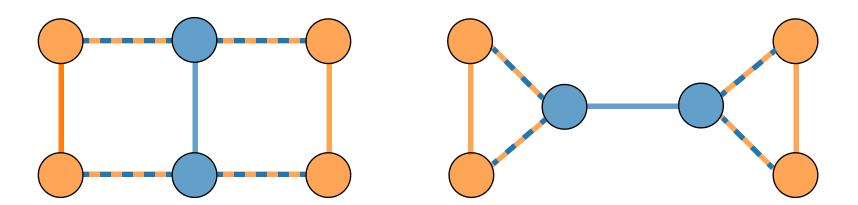
Theorem 3: Vertex-color vs. edge-color filtrations

There exist non-isomorphic graphs that vertex-color filtrations can distinguish but edge-color filtrations cannot, and vice-versa.



Vertex-color succeeds

Edge-color fails



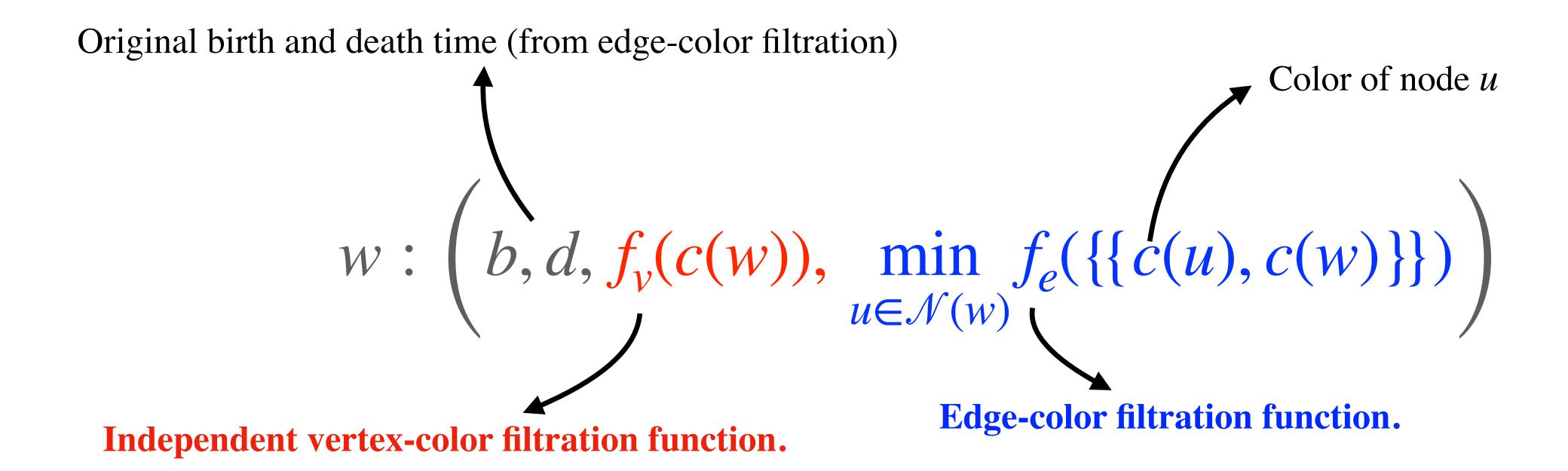
Vertex-color fails

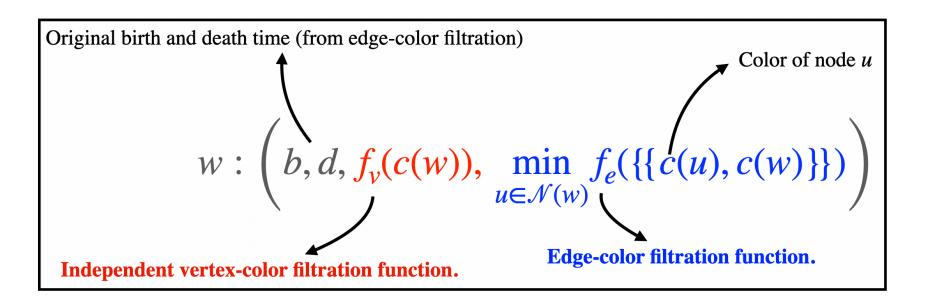
Edge-color succeeds

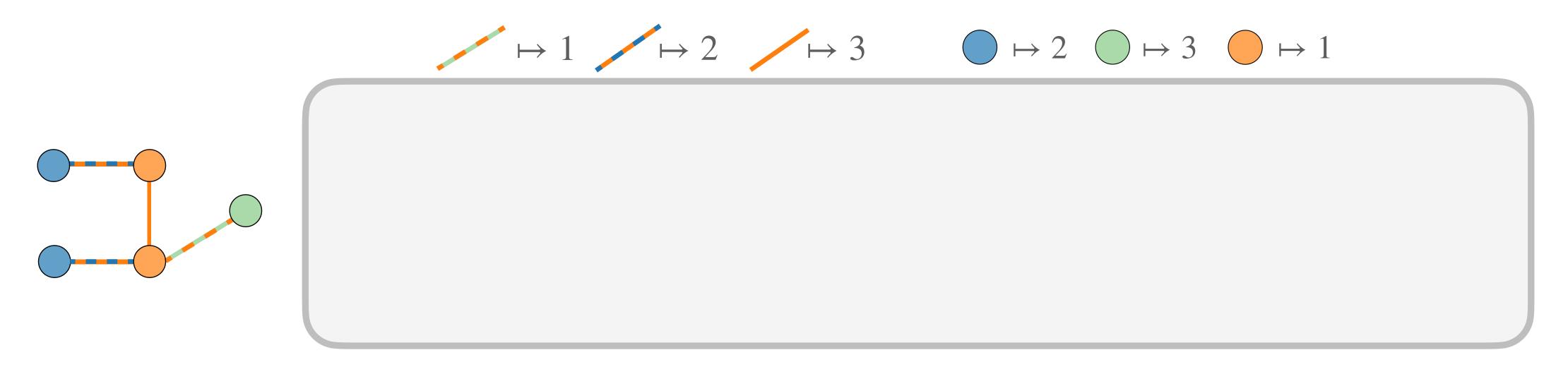
Can we design more expressive persistence diagrams?

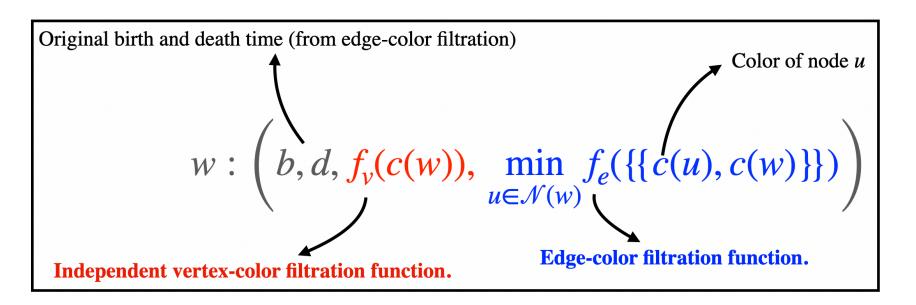
RePHINE (Refining PH by Incorporating Node-color into Edge-based filtration)

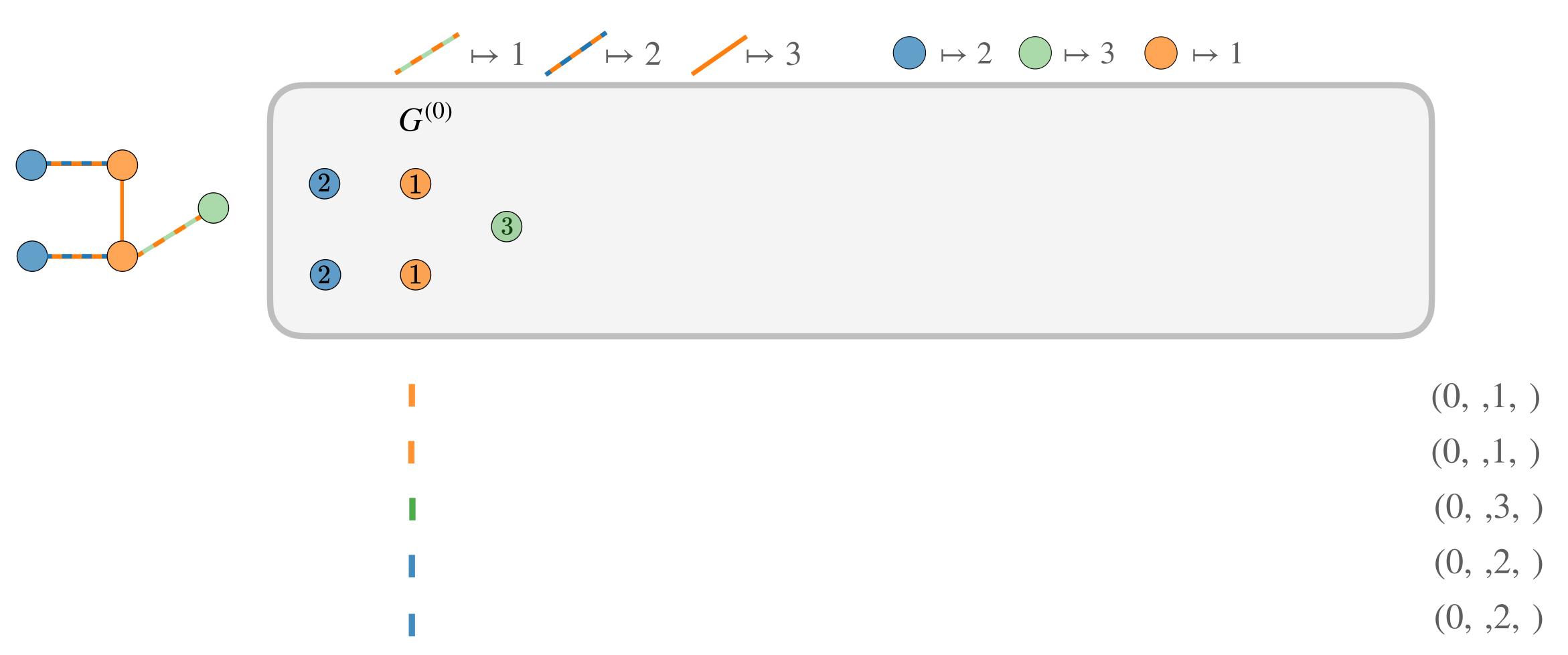
Idea: Given independent vertex- and edge-color filtration functions (f_v, f_e) , we augment persistence diagrams from edge-color filtrations with vertex-color information.

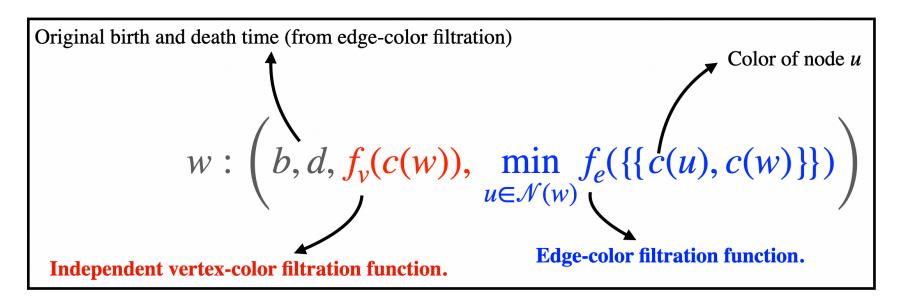


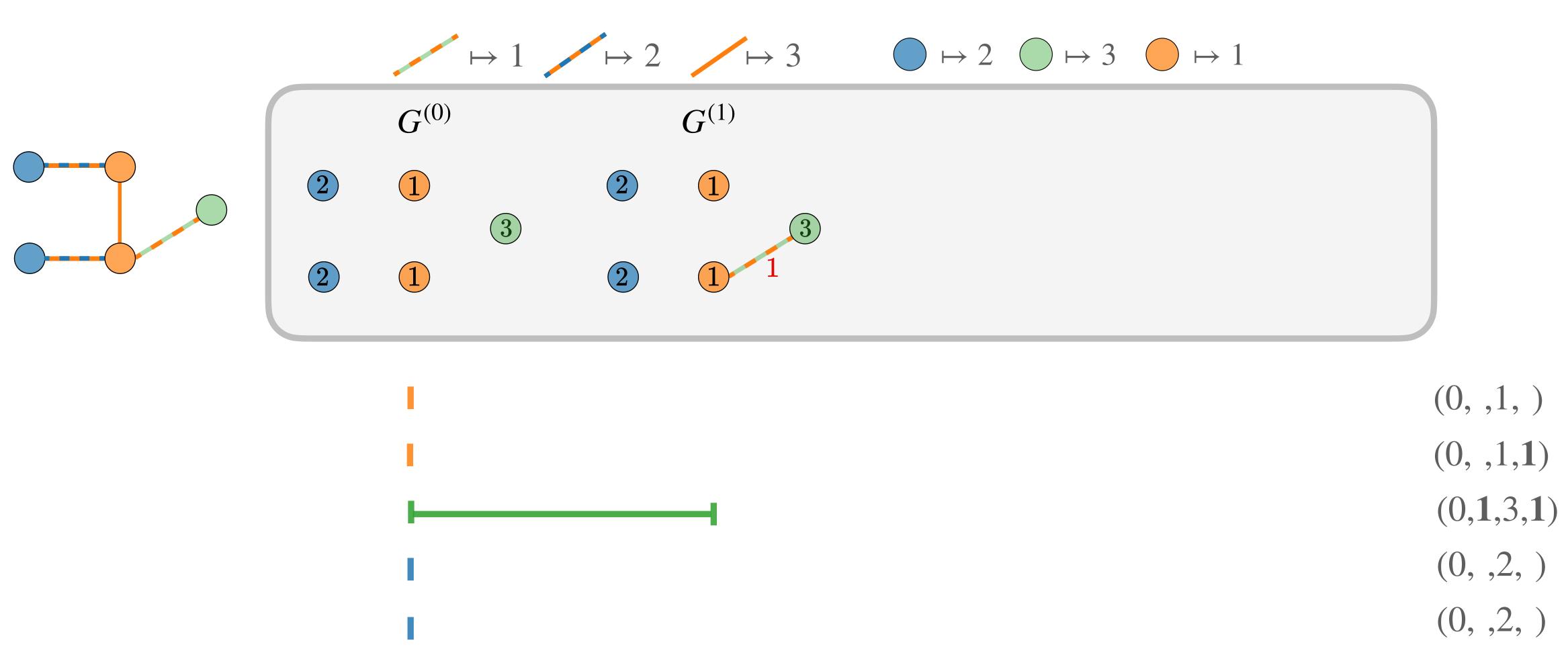


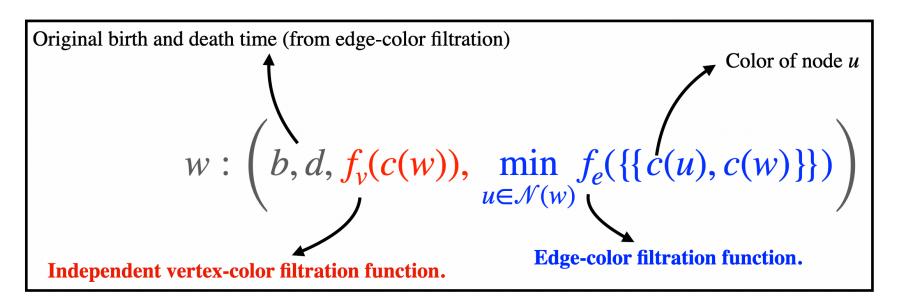


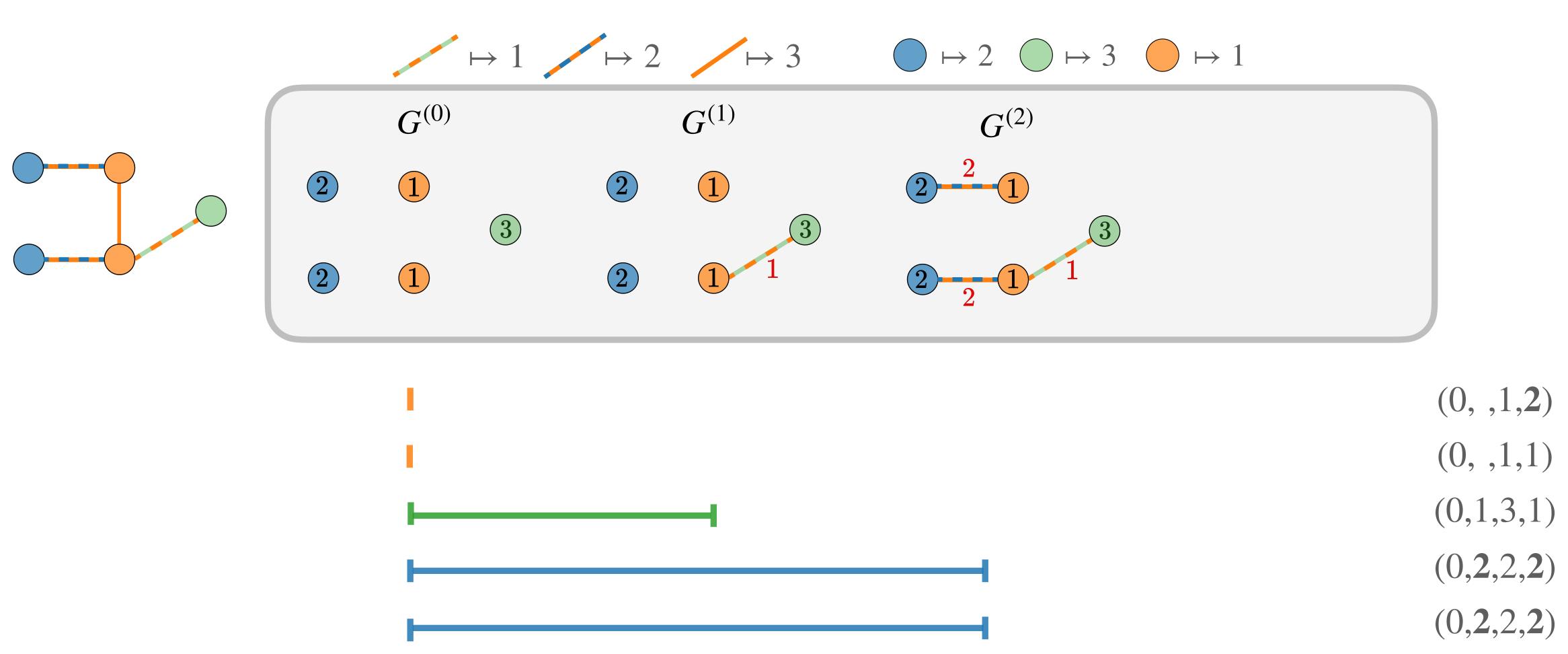


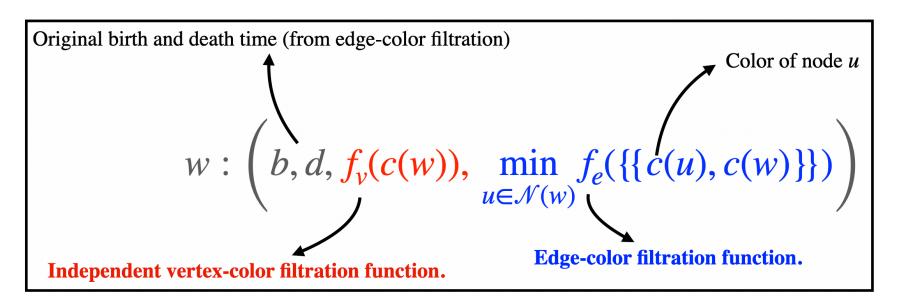


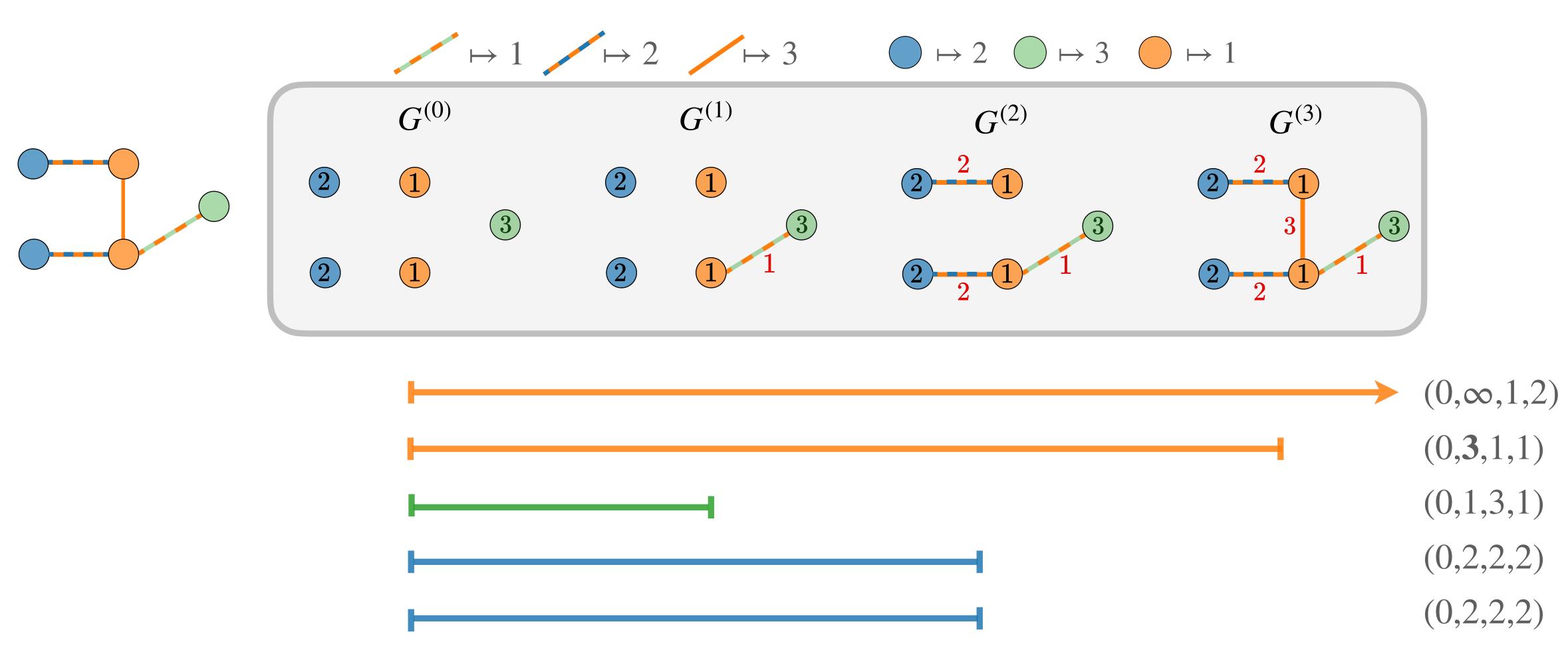








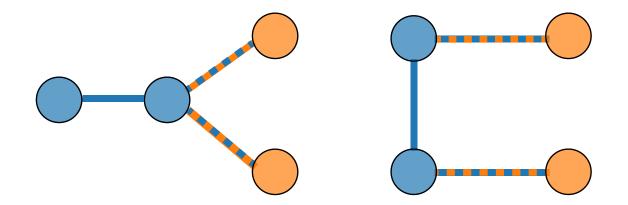




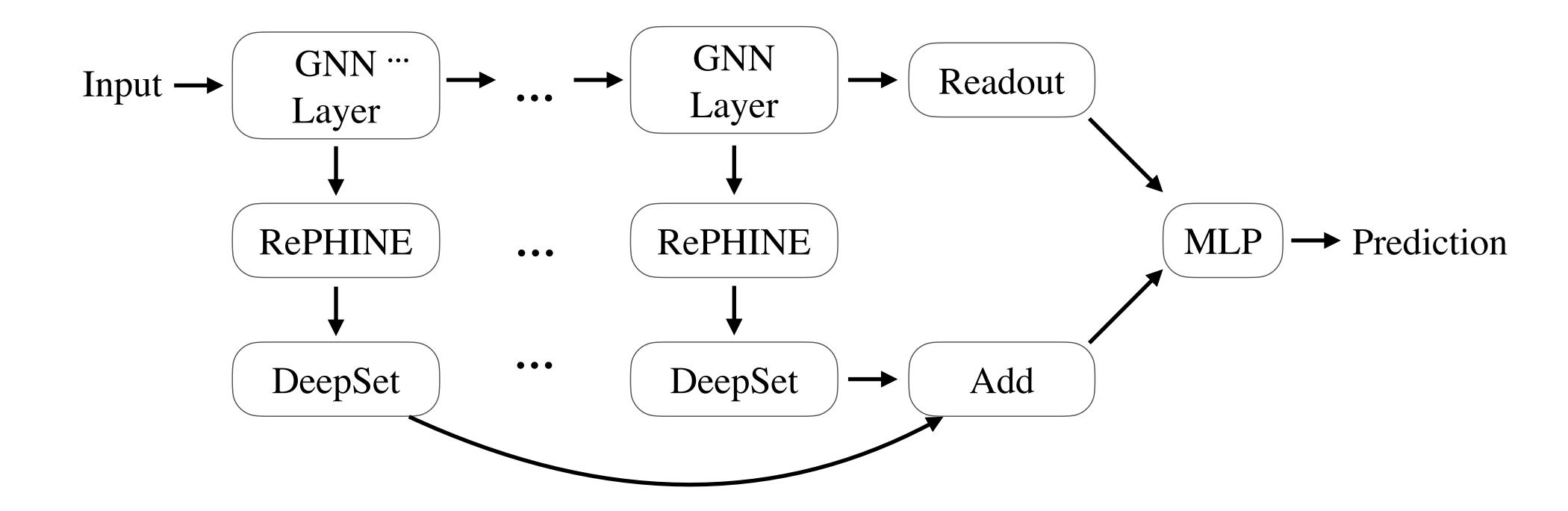
Theorem 4: RePHINE vs color-based diagrams

RePHINE is isomorphism invariant and is strictly more expressive than color-based PH.

Two graphs that color-based PH cannot distinguish, but RePHINE can.



Combining RePHINE and GNNs



Results on real-world data

We process the persistence diagrams using DeepSets and combine the resulting vectors with GNN embeddings.

Table 1: Predictive performance on graph classification. We denote in bold the best results. For ZINC, lower is better. For most datasets, RePHINE is the best-performing method.

GNN	Diagram	NCI109 ↑	PROTEINS ↑	IMDB-B↑	NCI1↑	MOLHIV ↑	ZINC ↓
GCN	- PH RePHINE	76.46 ± 1.03 77.92 ± 1.89 79.18 ± 1.97	70.18 ± 1.35 69.46 ± 1.83 71.25 ± 1.60	64.20 ± 1.30 64.80 ± 1.30 69.40 ± 3.78	74.45 ± 1.05 79.08 ± 1.06 80.44 ± 0.94	74.99 ± 1.09 73.64 ± 1.29 75.98 ± 1.80	$0.875 \pm 0.009 \ 0.513 \pm 0.014 \ 0.468 \pm 0.011$
GIN	- PH RePHINE	76.90 ± 0.80 78.35 ± 0.68 79.23 ± 1.67	72.50 ± 2.31 69.46 ± 2.48 72.32 ± 1.89	74.20 ± 1.30 69.80 ± 0.84 72.80 ± 2.95	76.89 ± 1.75 79.12 ± 1.23 80.92 ± 1.92	70.76 ± 2.46 73.37 ± 4.36 73.71 ± 0.91	0.621 ± 0.015 0.440 ± 0.019 $\textbf{0.411} \pm 0.015$

Wanna know more?

Visit our poster: #629

Thu 14 Dec 10:45 a.m. CST

Code: www.github.com/Aalto-QuML/rephine

Theoretical contributions of this work							
On vertex-level filtrations (Section 2 and Section 3.1):							
Inconsistency issues due to injective vertex filtrations	Lemma 1						
Real holes $(d = \infty) \cong$ Component-wise colors	Lemma 2						
Almost holes $(b \neq d, d \neq \infty) \cong$ Separating sets	Lemma 3						
Distinct almost holes \Rightarrow Color-separating set	Lemma 4						
Birth time of persistence tuples \cong Vertex color	Lemma 5						
The expressive power of vertex-color filtrations	Theorem 1						
On edge-level filtrations (Section 3.2):							
Almost holes \cong Disconnecting sets	Lemma 6						
Reconstruction of disconnecting sets	Lemma 7						
The expressive power of edge-color filtrations	Theorem 2						
Vertex-level vs. edge-level filtrations (Section 3.3):							
Vertex-level persistence ≠ edge-level persistence, and vice-versa	Theorem 3						
New method (RePHINE) (Section 4):							
RePHINE is isomorphism invariant	Theorem 4						
RePHINE \succ vertex-, edge-, and vertex- \cup edge-level diagrams	Theorem 5						

Johanna Immonen johanna.x.immonen@helsinki.fi Amauri H. Souza amauri.souza@aalto.fi

Vikas Garg vgarg@csail.mit.edu

