

Segment Anything in 3D with NeRFs

Jiazhong Cen¹,²*, Zanwei Zhou¹*, Jiemin Fang²,³, Chen Yang¹, Wei Shen¹™, Lingxi Xie², Dongsheng Jiang², Xiaopeng Zhang², Qi Tian²

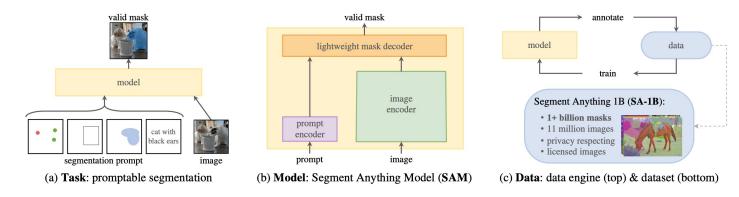
¹Institute of AI, SJTU

²Huawei Inc.

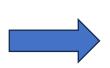
³School of EIC, HUST

Background: Segment Anything Model (SAM)

An impressive 2D segmentation foundation model



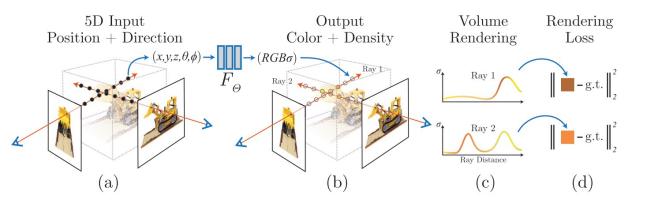
- How to build a 3D segmentation foundation model?
 - Lack of 3D data
 - Rich structure priors



Preliminaries

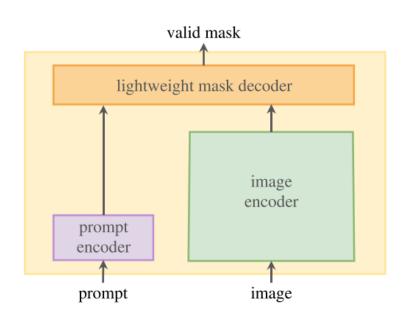
- Neural Radiance Fields (NeRFs)
 - A kind of 3D representation
 - Differentiable volumetric rendering:

$$\mathbf{I}_{\boldsymbol{\theta}}(\mathbf{r}) = \int_{t_n}^{t_f} \omega(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) dt$$

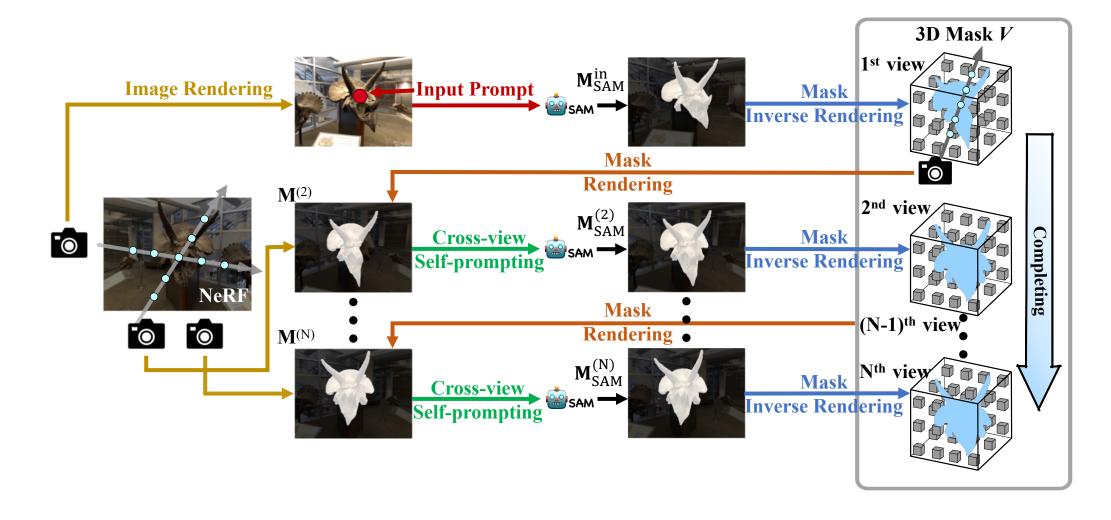


- Segment Anything Model (SAM)
 - Image encoder + prompt encoder + mask decoder
 - Input an image and prompts, output masks

$$\mathbf{M}_{\mathtt{SAM}} = s(\mathbf{I}, \mathcal{P})$$



Overall Pipeline



Mask Inverse Rendering

Mask grids rendering:

$$\mathbf{M}(\mathbf{r}) = \int_{t_n}^{t_f} \omega(\mathbf{r}(t)) \mathbf{V}(\mathbf{r}(t)) dt$$

- Weights are from the pretrained NeRF
- Projecting a 2D mask onto the mask grids is equivalent to assigning mask confidence scores according to the weights
 - Can be solved by gradient descent

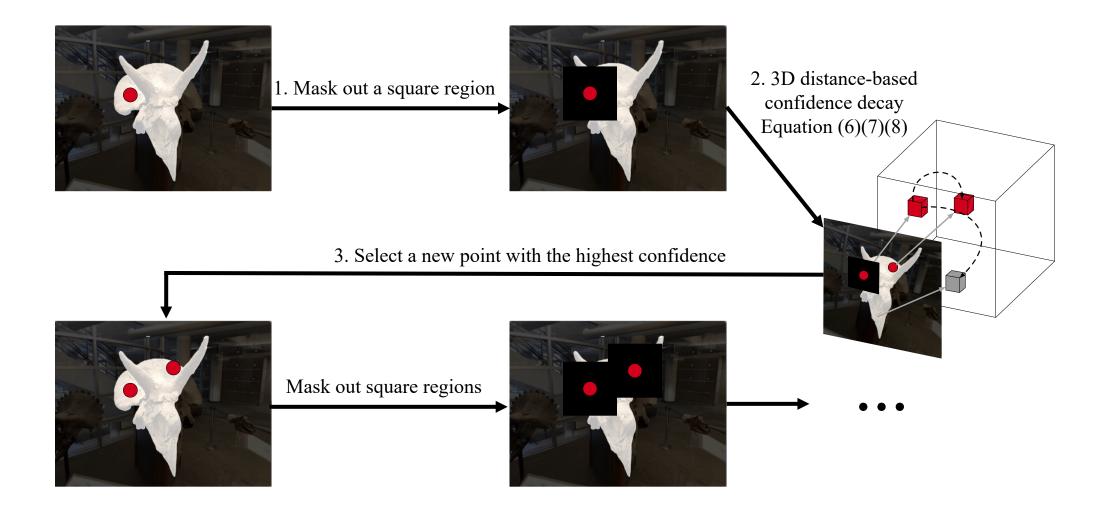
$$\mathcal{L}_{ exttt{proj}} = -\sum_{\mathbf{r} \in \mathcal{R}(\mathbf{I})} \mathbf{M}_{ exttt{SAM}}(\mathbf{r}) \cdot \mathbf{M}(\mathbf{r})$$

SAM is not always correct

$$\mathcal{L}_{\texttt{proj}} = -\sum_{\mathbf{r} \in \mathcal{R}(\mathbf{I})} \mathbf{M}_{\texttt{SAM}}(\mathbf{r}) \cdot \mathbf{M}(\mathbf{r}) + \lambda \sum_{\mathbf{r} \in \mathcal{R}(\mathbf{I})} (1 - \mathbf{M}_{\texttt{SAM}}(\mathbf{r})) \cdot \mathbf{M}(\mathbf{r})$$

Cross-view Self-prompting

Cross-view Self-prompting



Quantitative Results

Table 1: Quantitative results on NVOS.

Method	mIoU (%)	mAcc (%)
Graph-cut (3D) [48, 47]	39.4	73.6
NVOS [47]	70.1	92.0
ISRF [15]	83.8	96.4
SA3D (ours)	90.3	98.2

Table 2: Quantitative results on the SPIn-NeRF dataset.

Scenes	Single view		MVSe	g [39]	SA3D (ours)		
	IoU (%)	Acc (%)	IoU (%)	Acc (%)	IoU (%)	Acc (%)	
Orchids	79.4	96.0	92.7	98.8	83.6	96.9	
Leaves	78.7	98.6	94.9	99.7	97.2	99.9	
Fern	95.2	99.3	94.3	99.2	97.1	99.6	
Room	73.4	96.5	95.6	99.4	88.2	98.3	
Horns	85.3	97.1	92.8	98.7	94.5	99.0	
Fortress	94.1	99.1	97.7	99.7	98.3	99.8	
Fork	69.4	98.5	87.9	99.5	89.4	99.6	
Pinecone	57.0	92.5	93.4	99.2	92.9	99.1	
Truck	37.9	77.9	85.2	95.1	90.8	96.7	
Lego	76.0	99.1	74.9	99.2	92.2	99.8	
mean	74.6	95.5	90.9	98.9	92.4	98.9	

Table 3: Quantitative results on Replica (mIoU).

Scenes	office0	office1	office2	office3	office4	room0	room1	room2	mean
Single view MVSeg [39] SA3D (ours)	31.4	40.4	30.4	30.5	25.4	31.1	40.7		32.4

Qualitative Results



Qualitative Results

More Analysis

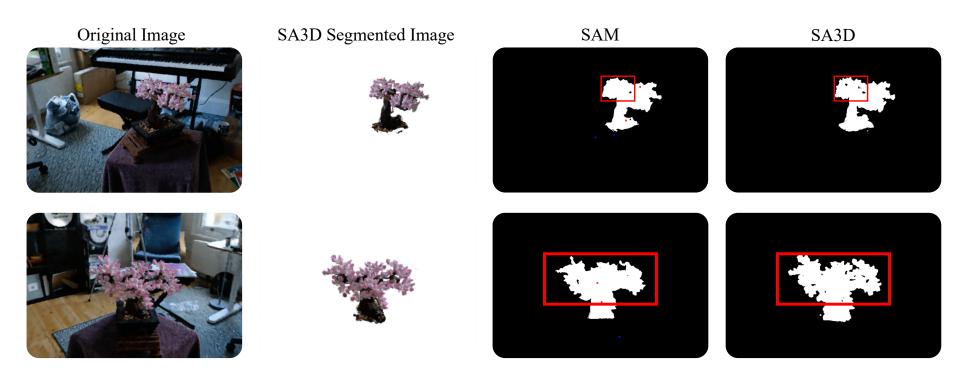
• Different 2D segmentation model (evaluated on the NVOS dataset)

SEEM [75]		SimpleC	lick [32]	RITM	1 [49]	FocalClick [5]		
mIoU (%)	mAcc (%)	mIoU (%)	mAcc (%)	mIoU (%)	mAcc (%)	mIoU (%)	mAcc (%)	
86.0	97.0	87.7	97.8	81.2	96.3	88.9	98.1	

- SEEM: segmentation foundation model
- SimpleClick, RITM, FocalClick: interactive segmentation models
- SA3D can generalize to different models if they can steadily address promptable segmentation across multiple views

More Analysis

NeRF helps SAM



 The depth information provided by NeRFs can help to generate more precise 2D segmentation results

More Analysis

The effect of occlusion

- Occluded but seen in other views
- Never seen in any view: maybe can use diffusion models for repairing

Summary

- We present SA3D, a novel framework for lifting 2D segmentation models to 3D
- We demonstrate the effectiveness of SA3D on various datasets
- Comprehensive experiments are conducted to analyze the characteristic of SA3D

Thanks for listening!

Segment Anything in 3D with NeRFs

Jiazhong Cen¹,²*, Zanwei Zhou¹*, Jiemin Fang²,³, Chen Yang¹, Wei Shen¹™, Lingxi Xie², Dongsheng Jiang², Xiaopeng Zhang², Qi Tian²

¹Institute of AI, SJTU ²Huawei Inc. ³School of EIC, HUST

