

AU
ORE MANAGEMENTSchool of
Computing and
Information Systems

Estimating Propensity for Causality-based Recommendation without Exposure Data

Zhongzhou Liu¹, Yuan Fang¹, Min Wu²

¹School of Computing and Information Systems, Singapore Management University

²Institute for Infocomm Research, A*Star

	Shampoo	Nintendo Switch
Recommended Not recommended	95% 90%	50% 10%
Recommendation effect	5%	40%

Exposure: whether the target item is exposed (recommended) to a user. Propensity: The probability of an item is exposed (recommended) to a user.

If an item already has a high probability of being interacted by a user without being recommended, *is there really a need to recommend the item to this user?*

Introduction

- Causality-based recommendation
 - Traditional RS award items with higher interaction probabilities
 - Causality RS award items with higher causal effect
- Limitations of existing methods
 - Require exposure and/or propensity to be known during training and/or inference
 - Fail to incorporate prior knowledge
- Our contribution
 - Propose a propensity estimation method for causality-based RS without ground-truth data.
 - Build a pairwise relationship between propensity and item popularity with a key assumption.

Naïve method

Interaction model

$$y_{u,i} = p_{u,i} r_{u,i},$$

- $y_{u,i}$ Interaction (observed)
- $p_{u,i}$ Propensity (unobserved)
- $r_{u,i}$ Relevance (unobserved)

But directly estimating with interaction model is not robust.

Consider a user u and a pair of items (*i*, *j*). Suppose the popularity of item *i* is greater than that of *j*, and their interaction probabilities with user *u* are similar. Then it follows that item *i* is more likely to be exposed to user *u* than item *j* is.

item pairs (i, j) that satisfy the assumption

• item popularity as a *proxy* (<u>core assumption</u>)

 $-\log\left[\sigma(f_p(\mathbf{x}_{u,i}) - f_p(\mathbf{x}_{u,j}))\right] \text{ s.t. } \operatorname{pop}_i > \operatorname{pop}_j, \ y_{u,i} \approx y_{u,j},$

· Relationship between propensity and interaction (interaction model)

$$-Y_{u,i}\log f_p(\mathbf{x}_{u,i};\Theta_p)f_r(\mathbf{x}_{u,i};\Theta_r) - (1 - Y_{u,i})\log(1 - f_p(\mathbf{x}_{u,i};\Theta_p)f_r(\mathbf{x}_{u,i};\Theta_r))$$

Regularization

 $\mu \mathrm{KL}(Q \| \mathrm{Beta}(\alpha, \beta))$

Methods	DH_original			DH_personalized			ML		
	CP@10 ↑	CP@100↑	CDCG↑	CP@10 ↑	CP@100↑	CDCG↑	CP@10 ↑	CP@100 ↑	CDCG↑
Ground-truth	$.0658 \pm .001$	$.0215 {\pm} .001$	$1.068{\pm}.000$.1304±.001	$.0445 {\pm} .001$	$1.469{\pm}.003$.2471±.001	$.1887 {\pm} .000$	$16.29 \pm .006$
Random	$0.0154 \pm .001$	$.0071 {\pm} .002$	$.7390 {\pm} .004$	$.0479 \pm .004$	$.0107 {\pm} .005$.8316±.039	$.0124 \pm .002$	$.0135 \pm .005$	$13.16 \pm .076$
POP	$.0200 \pm .000$	$.0113 \pm .000$	<u>.7877</u> ±.001	$.0457 \pm .000$	$.0096 {\pm} .001$	$.8491 {\pm} .002$	$142 \pm .001$	$092 \pm .001$	$11.43 \pm .005$
CJBPR	<u>.0263</u> ±.001	$.0087 {\pm} .001$	$.7769 {\pm} .002$	$.0564 \pm .008$	$.0106 {\pm} .005$	$.8528 {\pm} .032$	$410 \pm .002$	$187 \pm .001$	$9.953 {\pm}.006$
FM	0118 ± 001	0067 ± 001	7247 ± 001	0507 ± 002	0121 ± 001	8770 ± 0.03	-437 ± 002	-104 ± 002	10.21 ± 0.011
PROPCARE	.0351±.002	.0156 ±.001	.9268 ±.005	.1270 ±.001	0.0381 ± 0.000	$1.426 \pm .001$.0182 ±.002	.0337 ±.002	13.80 ±.011

	DH_original			DH_personalized			ML		
Methods	KLD↓	Tau↑	F1 score↑	KLD↓	Tau↑	F1 score↑	KLD↓	Tau↑	F1 score↑
Random	$.5141 \pm .001$	$.0002 {\pm} .000$	$.4524 {\pm} .013$	$ 3.008 \pm .002 $	$.0001 \pm .000$.4463±.021	$.0363 {\pm} .002$	$.0002 {\pm} .000$.4511±.022
POP	$.5430 \pm .000$.4726 ±.000	$.2851 {\pm} .000$	$4.728 \pm .000$.6646 ±.000	$.2772 \pm .000$	$.0615 {\pm} .000$.4979 ±.000	<u>.5050</u> ±.000
CJBPR	<u>.3987</u> ±.008	$.3279 {\pm} .011$	$.2853 {\pm} .005$	$2.650 \pm .022$	<u>.6477</u> ±.013	$.2825 \pm .005$	<u>.0230</u> ±.006	<u>.4956</u> ±.045	.5189±.020
EM	$.6380 \pm .002$	$.0834 \pm .000$	$.4974 \pm .001$	$2.385 \pm .001$	$.0934 \pm .002$	$.4954 \pm .009$	$.0517 \pm .001$	$.1321 \pm .002$	$.3653 \pm .005$
PROPCARE	.3851 ±.023	$\underline{.3331} {\pm}.065$.5846 ±.006	1.732 ±.038	$.4706 {\pm} .072$.6059±.017	$\textbf{.0204} {\pm} .005$	$.3889 {\pm} .034$.4847±.020

- Our proposed method can estimate propensity for causality-based RS without the need to access ground-truth propensity and exposure data.
- we formulated a key assumption and incorporated it as prior information to enhance our estimation, thereby improving causality-based recommendation.