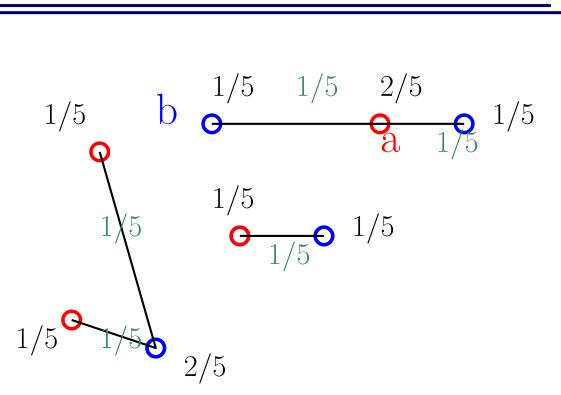
A Combinatorial Algorithm for Approximating the Optimal Transport in the Parallel and MPC Settings

Nathaniel Lahn, Sharath Raghvendra, Kaiyi Zhang

Introduction - The Optimal Transport Problem

- Distributions: μ and ν ,
- Supports: *A* and *B*
- Mass on support: μ_a and ν_b
- d(a, b): cost of transporting unit mass from $b \in B$ to $a \in A$.

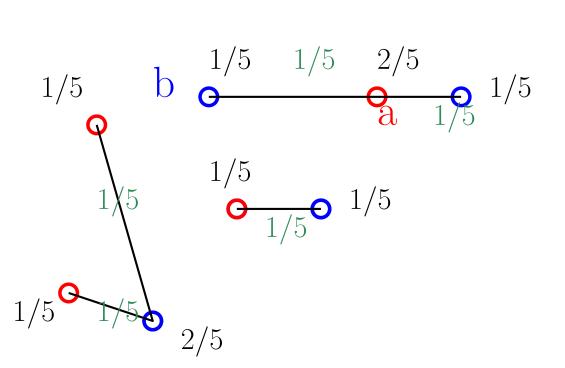


Cost of transporting 1/5 mass from *b* to *a* is d(a, b)/5

Introduction - The Optimal Transport Problem

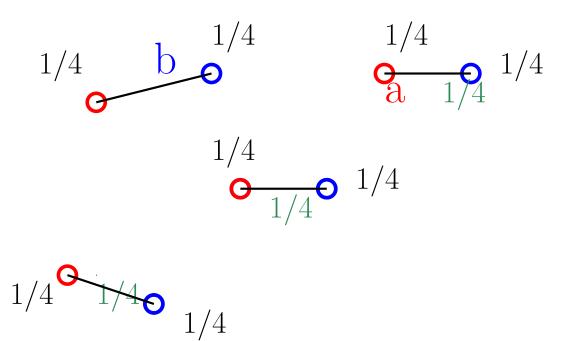
- $\sigma(a, b)$ is the mass transported from *b* to *a*.
- Cost of the transport plan: $\Sigma_{(b,a)\in B\times A} \sigma(a,b)d(a,b)$
- Denote minimum-cost transport plan by σ^* , we define ε approximate transport plan σ :

$$c(\sigma) \le c(\sigma^*) + \varepsilon$$



Introduction - Assignment Problem

- Every Point in A and B has mass 1/n
- There are n vertex-disjoint edges with $\sigma(a, b) = 1/n$



Cost of transporting 1 /4 mass from b to a is d(a,b)/4

Existing Work and Challenges

Sequential:

- Exact Algorithm (minimum cost flow): 0(n³ log n) (~20s, n=10k)
- ε -Approximation Algorithm: $O(n^2 \operatorname{poly}\{1/\varepsilon, \log n\})$
- Best: LMR algorithm, Lahn et al. (Neurips'19) $\tilde{O}(n^2/\varepsilon + n/\varepsilon^2)$, hard to parallelize

Parallel:

- Most successful method: Sinkhorn-Knopp, $\tilde{O}(\log(n)/\varepsilon^{O(1)})$
 - Simple, easy implementation
 - Stability, convergence issues
- Best in theoretical: Jambulapati et al. $\tilde{O}(\log(n)/\varepsilon)$
 - Complex, hard implementation

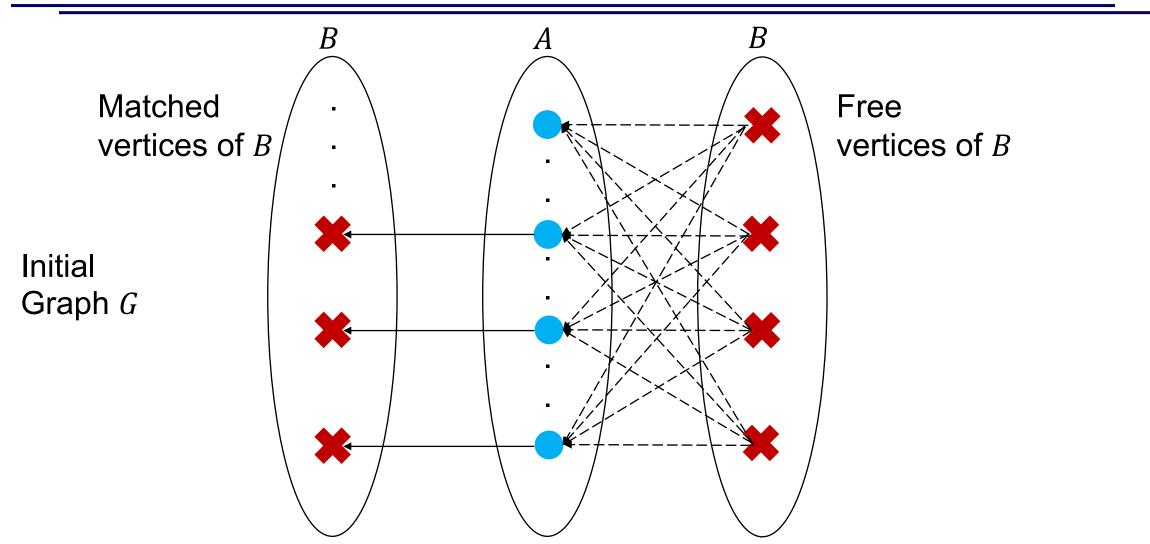
Major Challenges: Design an efficient parallel combinatorial algorithm

Our Approach

- Replace sequential search with push-relabel in LMR algorithm
- Benefits:
 - Easy to parallelize
 - Fully vectorized, pure matrix operations
- For each phase of our algorithm execute steps on the right
- We present the assignment problem, and OT can be reduced into assignment problem

```
Initialization: Extract
admissible graph G'
Greedy step: Computes a maximal
matching M' in the graph.
Matching Update
Dual Update
```

Our Approach - Initialization



Our Approach - Initialization

В

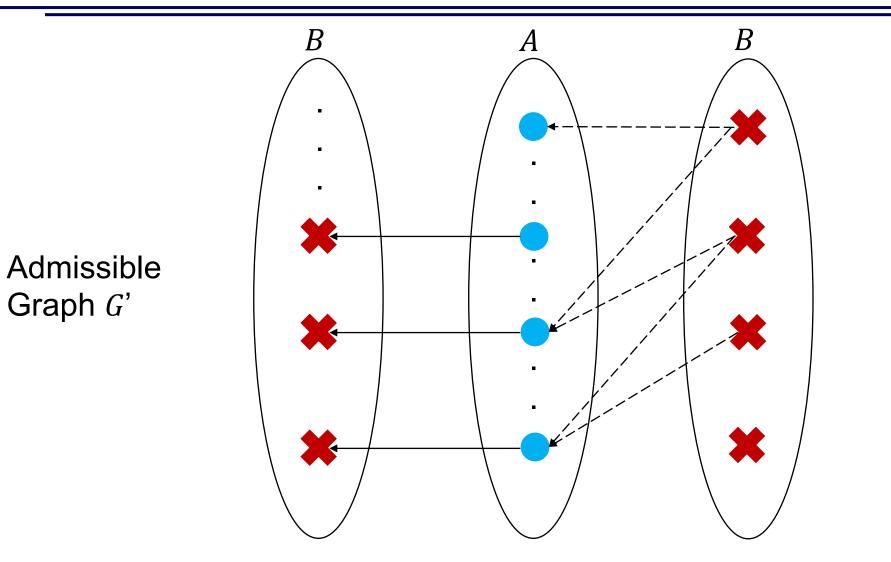
Extract Zero Slack Edges From G'

A

В

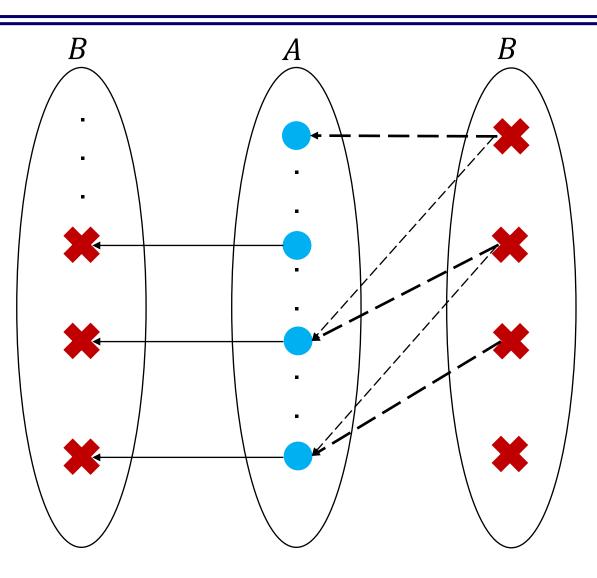
8

Our Approach - Initialization



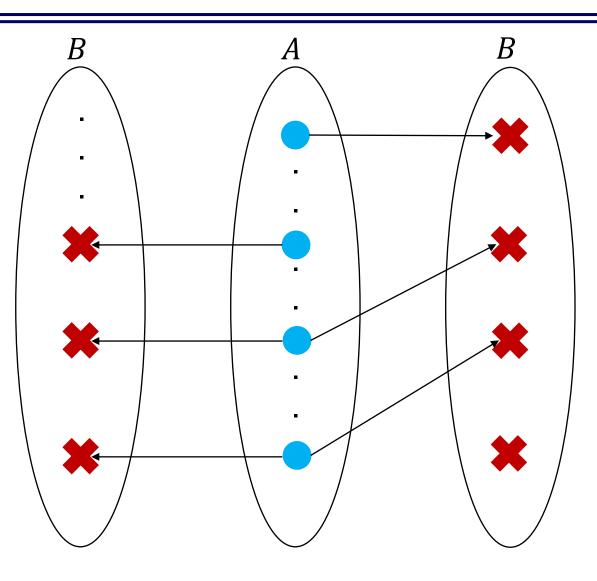
Our Approach - Greedy step

Computes a maximal matching *M'* in *G*'

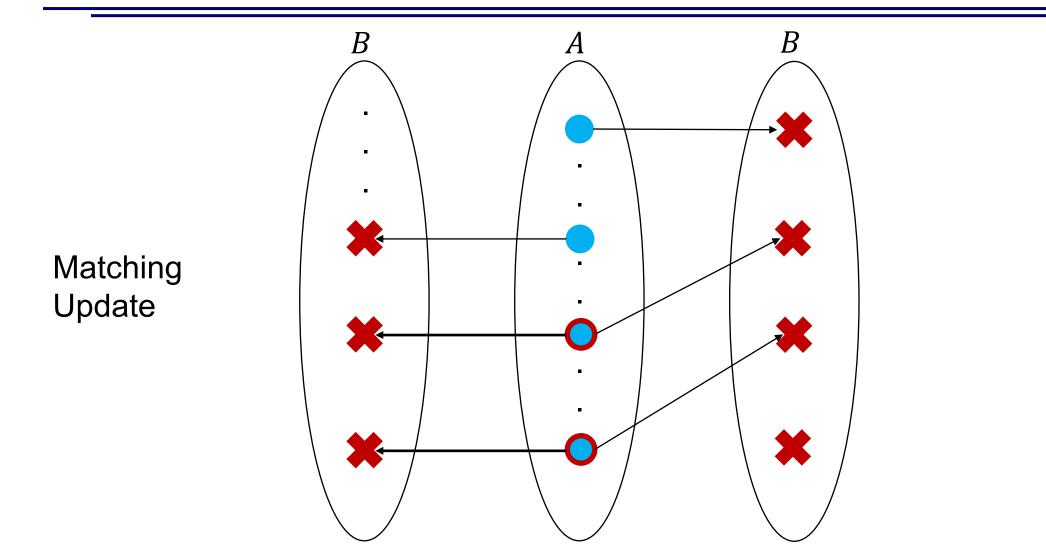


Our Approach - Greedy step

Computes a maximal matching *M'* in *G*'

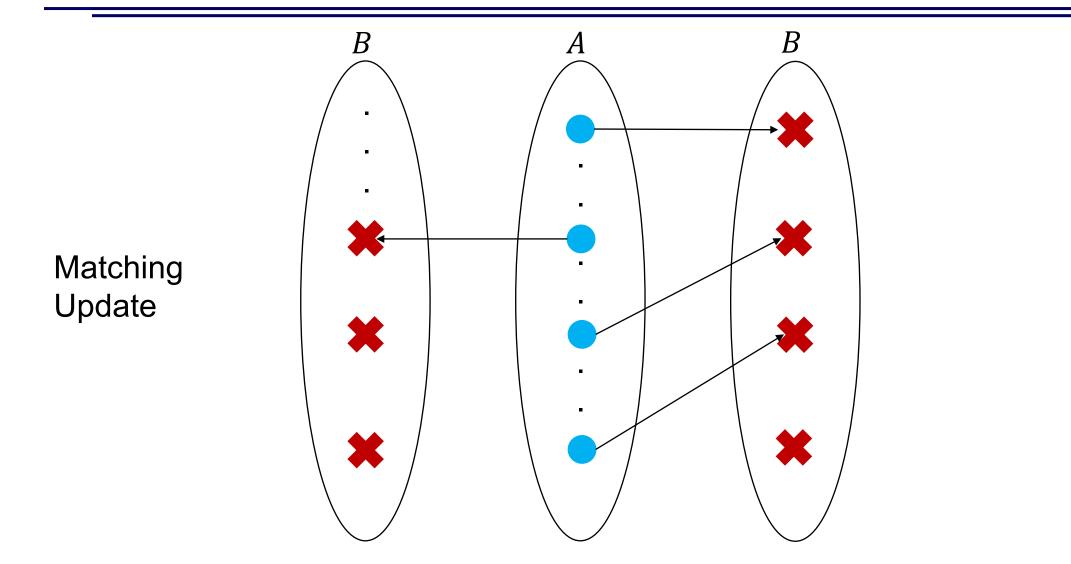


Our Approach - Matching Update

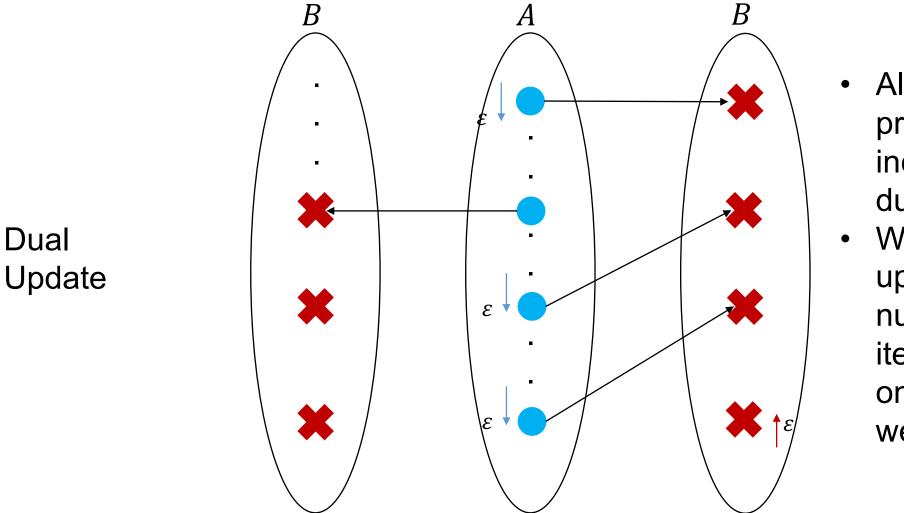


12

Our Approach - Matching Update



Our Approach - Dual Update



- Algorithm makes progress by increasing the dual weights
- We prove the upper bound of number of iterations based on the dual weights

Our Approach - Running Time

• OT problem:

- We use Israeli and Itai (1986) algorithm or MPC model to compute maximal matching M' in parallel
- Time per phase:

 $O(n^2)$ (sequential), $O(\log n)$ (Israeli and Itai), $O(\log \log n)$ (MPC)

• Number of phases: $0(1/\varepsilon^2)$

Total time:

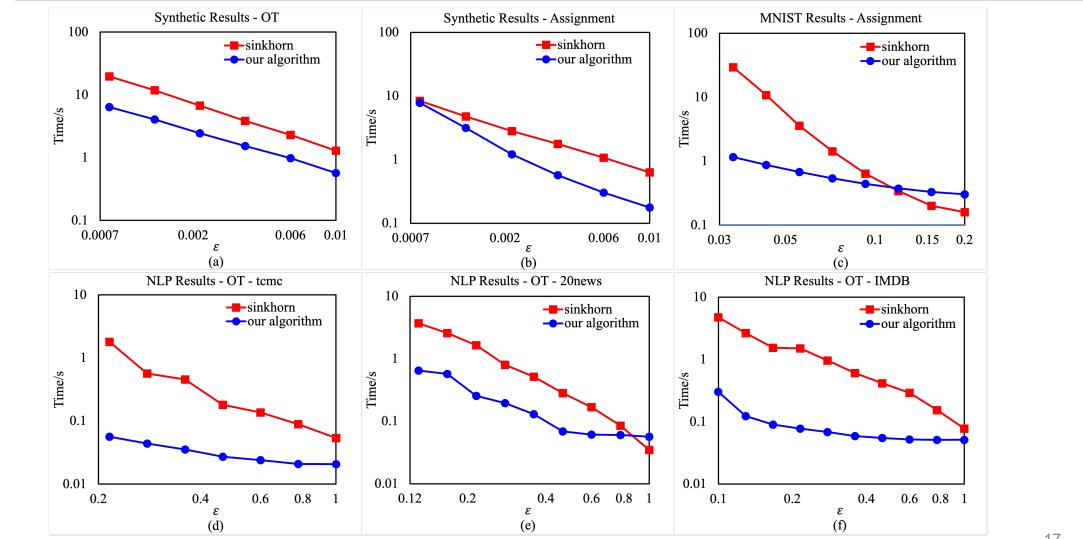
 $O(n^2/\varepsilon^2)$ (sequential), $O(\log n/\varepsilon^2)$ (Israeli and Itai), $O(\log \log n/\varepsilon^2)$ (MPC)

- Assignment problem:
 - $0(n^2/\varepsilon)$ in sequential

Experiment Results

- Performance Comparison with Sinkhorn on GPU.
- Data Types: Synthetic data, real data (MNIST, NLP)
- Settings:
 - Assignment: synthetic data, MNIST images
 - OT: synthetic data, documents word embeddings.
- Results: our algorithm outperform Sinkhorn for most cases.

Experiment Results – Running Time



Experiment Results – Parallel Rounds

