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Deep learning with kernels

Combine the flexibility of deep neural networks with the representation
power and solid theoretical understanding of kernel methods.

kj : Rdj×dj -valued positive definite kernel
Hj : vector-valued RKHS associated with kj
Gj = {f ∈ Hj | ∥f∥Hj ≤ Bj} (j = 1, . . . , L)
Gdeep
L = {fL ◦ · · · ◦ f1 | fj ∈ Gj (j = 1, . . . , L)}

Deep RKHS : f = f1 ◦ · · · ◦ fL (1)
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Generalization of deep kernel methods in RKHS to RKHM

RKHM
(Infinite dimensional Hilbert C∗-module)

Linear + C∗-algebra-valued inner product

X
(Structured data sp.)

Nonlinear

Feature map ϕ
x

sample
(function, image,...)

ϕ(x)

C∗-algebra-valued function

Examples of C∗-algebra:
• Cd×d = {d by d matrices}
• Block((m1, . . . ,mM ), d) =
{d by d block diagonal matrices with block size (m1, . . . ,mM )}

Advantages of RKHM:
• C∗-algebra-valued inner products extract information of structures.
• RKHM is a natural generalization of RKHS.
• Fundamental properties for data analysis (e.g. representer theorem).
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Deep RKHM

A = Cd×d, Aj : C∗-subalgebra of A (e.g. Block((m1, . . . ,mM ), d))
kj : Aj-valued positive definite kernel (ϕj : feature map)
Mj : RKHM associated with kj (j = 1, . . . , L)
Pf : Mj → Mj+1 (Perron–Frobenius operator) :

A-linear operator satisfying Pfϕj(x) = ϕj+1(f(x))
Fj = {f ∈ Mj | ∥Pf∥ ≤ Bj} (j = 1, . . . , L− 1)
FL = {f ∈ ML | ∥f∥ML

≤ BL}
Fdeep
L = {fL ◦ · · · ◦ f1 | fj ∈ Fj (j = 1, . . . , L)}

Deep RKHM : f = fL ◦ · · · ◦ f1 ∈ Fdeep
L (2)
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Advantages and properties of deep RKHM with the P–F operators

• Useful structures of matrices: Interactions among elements are
induced by block diagonal structures of matrices.

• Availability of the operator norm: The operator norm alleviates the
dependency of the generalization error on the output dimension.

• Connection with benign overfitting: We derived a generalization
bound for deep RKHMs using Perron–Frobenius operators, which
provides a connection with benign overfitting.

• Representer theorem: We proved a representer theorem of deep
RKHMs involving the Perron–Frobenius operators.
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Numerical results

Autoencoder with synthetic data
(d = 10, n = 10, L = 3)

Classification task with MNIST
(d = 28, n = 20, L = 2)
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Conclusion

• We investigated deep kernel learning with RKHM.

• We applied Perron–Frobenius operators and the operator norm to
derive a generalization bound.

• The dependence of the bound on the output dimension is milder than
existing bound by virtue of the operator norm. Moreover, the
application of the Perron–Frobenius operator induces a connection
with benign overfitting.
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