Regularized Composite ReLU-ReHU Loss Minimization with Linear Computation and Linear Convergence

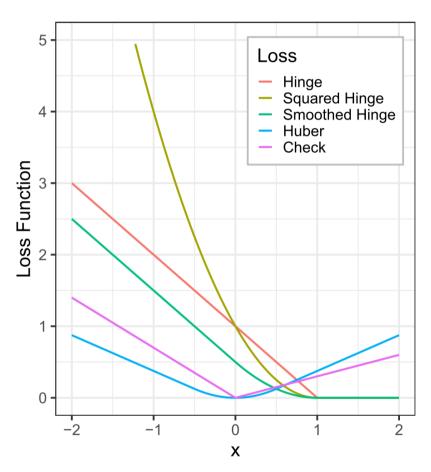
Ben Dai 1, Yixuan Qiu 2

Equal Contribution

1 Chinese University of Hong Kong (CUHK), 2 Shanghai University of Finance and Economics

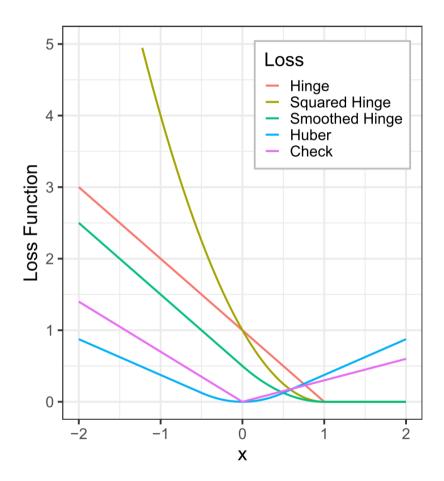
Motivation

- Empirical risk minimization (ERM) is a fundamental framework in machine learning
- Many different loss functions
- Efficient solvers exist for specific problems
- E.g., Liblinear for hinge loss
 SVM



Motivation

- Can we develop optimization algorithms for general ERM loss functions?
- Can we achieve provable fast convergence rates?
- Can we transfer the empirical success of Liblinear to general ERM problems?



Model

In this paper, we consider a general regularized ERM based on a **convex PLQ loss** with linear constraints:

 $\min_{eta \in \mathbb{R}^d} \sum_{i=1}^n L_i(\mathbf{x}_i^\intercaleta) + rac{1}{2} \|eta\|_2^2, \quad ext{ s.t. } \mathbf{A}eta + \mathbf{b} \geq \mathbf{0},$

- $L_i(\cdot) \ge 0$ is the proposed composite ReLU-ReHU loss.
- $\mathbf{x}_i \in \mathbb{R}^d$ is the feature vector for the *i*-th observation.
- $\mathbf{A} \in \mathbb{R}^{K \times d}$ and $\mathbf{b} \in \mathbb{R}^{K}$ are linear inequality constraints for β .
- We focus on working with a large-scale dataset, where the dimension of the coefficient vector and the total number of constraints are comparatively much smaller than the sample sizes, that is, $d \ll n$ and $K \ll n$.

Definition 1 (*Dai and Qiu. 2023*). A function L(z) is composite ReLU-ReHU, if there exist $\mathbf{u}, \mathbf{v} \in \mathbb{R}^L$ and $\tau, \mathbf{s}, \mathbf{t} \in \mathbb{R}^H$ such that

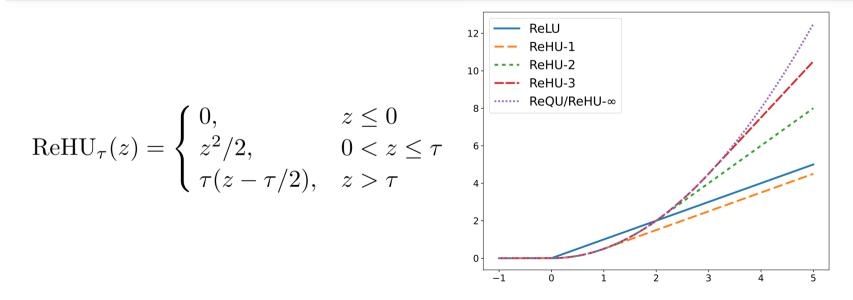
$$L(z) = \sum_{l=1}^L \operatorname{ReLU}(u_l z + v_l) + \sum_{h=1}^H \operatorname{ReHU}_{ au_h}(s_h z + t_h)$$

where $\operatorname{ReLU}(z) = \max\{z, 0\}$, and $\operatorname{ReHU}_{\tau_h}(z)$ is defined below.

Definition 1 (*Dai and Qiu. 2023*). A function L(z) is composite ReLU-ReHU, if there exist $\mathbf{u}, \mathbf{v} \in \mathbb{R}^L$ and $\tau, \mathbf{s}, \mathbf{t} \in \mathbb{R}^H$ such that

$$L(z) = \sum_{l=1}^L \operatorname{ReLU}(u_l z + v_l) + \sum_{h=1}^H \operatorname{ReHU}_{ au_h}(s_h z + t_h)$$

where $\operatorname{ReLU}(z) = \max\{z, 0\}$, and $\operatorname{ReHU}_{\tau_h}(z)$ is defined below.



Theorem 1 (*Dai and Qiu. 2023*). A loss function $L : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is **convex PLQ** *if and only if* it is **composite ReLU-ReHU**.

Table 2: Some widely used composite ReLU-ReHU losses as in (3). Here SVM is weighted SVMs based on the hinge loss [7], sSVM is smoothed SVMs based on the smoothed hinge loss [33], SVM² is weighted squared SVMs based on the squared hinge loss [7], LAD is the least absolute deviation regression, SVR is support vector regression with the ε -insensitive loss [44], and QR is quantile regression with the check loss [26].

PROBLEM	Loss ($L_i(z_i)$)	COMPOSITE RELU-REHU PARAMETERS
SVM	$\overline{c_i(1-y_iz_i)_+}$	$u_{1i} = -c_i y_i, v_{1i} = c_i$
sSVM	$c_i \operatorname{ReHU}_1(-(y_i z_i - 1))$	$s_{1i} = -\sqrt{c_i}y_i, t_{1i} = \sqrt{c_i}, \tau = \sqrt{c_i}$
SVM^2	$c_i((1-y_i z_i)_+)^2$	$s_{1i} = -\sqrt{2c_i}y_i, t_{1i} = \sqrt{2c_i}, \tau = \infty$
LAD	$c_i y_i - z_i $	$u_{1i} = c_i, v_{1i} = -c_i y_i, u_{2i} = -c_i, v_{2i} = c_i y_i$
SVR	$c_i(y_i - z_i - \varepsilon)_+$	$u_{1i} = c_i, v_{1i} = -(y_i + \varepsilon), u_{2i} = -c_i, v_{2i} = y_i - \varepsilon$
QR	$c_i ho_\kappa (y_i - z_i)$	$u_{1i} = -c_i \kappa, v_{1i} = \kappa c_i y_i, u_{2i} = c_i (1 - \kappa), v_{2i} = -c_i (1 - \kappa) y_i$

Table 2: Some widely used composite ReLU-ReHU losses as in (3). Here SVM is weighted SVMs based on the hinge loss [7], sSVM is smoothed SVMs based on the smoothed hinge loss [33], SVM² is weighted squared SVMs based on the squared hinge loss [7], LAD is the least absolute deviation regression, SVR is support vector regression with the ε -insensitive loss [44], and QR is quantile regression with the check loss [26].

PROBLEM	Loss $(L_i(z_i))$	COMPOSITE RELU-REHU PARAMETERS
SVM	$\overline{c_i(1-y_iz_i)_+}$	$\overline{u_{1i} = -c_i y_i, v_{1i} = c_i}$
sSVM	$c_i \operatorname{ReHU}_1(-(y_i z_i - 1))$	$s_{1i} = -\sqrt{c_i}y_i, t_{1i} = \sqrt{c_i}, \tau = \sqrt{c_i}$
SVM^2	$c_i((1-y_i z_i)_+)^2$	$s_{1i} = -\sqrt{2c_i}y_i, t_{1i} = \sqrt{2c_i}, \tau = \infty$
LAD	$c_i y_i - z_i $	$u_{1i} = c_i, v_{1i} = -c_i y_i, u_{2i} = -c_i, v_{2i} = c_i y_i$
SVR	$c_i(y_i - z_i - \varepsilon)_+$	$u_{1i} = c_i, v_{1i} = -(y_i + \varepsilon), u_{2i} = -c_i, v_{2i} = y_i - \varepsilon$
QR	$c_i \rho_\kappa (y_i - z_i)$	$u_{1i} = -c_i \kappa, v_{1i} = \kappa c_i y_i, u_{2i} = c_i (1 - \kappa), v_{2i} = -c_i (1 - \kappa) y_i$

ReHLine applies to **any** convex piecewise linear-quadratic loss function (potential for non-smoothness included), including the hinge loss, the check loss, the Huber loss, etc.

Main Results

Table 1: Overview of existing algorithms for solving (1). Column COMPLEXITY (PER ITERATION) shows the computational complexity of the algorithm per iteration. Here, we focus only on the order of n since $d \ll n$ is assumed in our setting. Column #ITERATIONS shows the number of iterations needed to achieve an accuracy of ε to the minimizer.

Algorithm	COMPLEXITY (PER ITERATION)	#ITERATIONS	COMPLEXITY (TOTAL)
P-GD	$\mathcal{O}(n)$	$\mathcal{O}(arepsilon^{-1})$ 6	$\mathcal{O}(n\varepsilon^{-1})$
CD	$\mathcal{O}(n^2)$	$\mathcal{O}(\log(\varepsilon^{-1}))$ 31	$\mathcal{O}(n^2 \log(\varepsilon^{-1}))$
IPM	${\cal O}(n^2)$	$\mathcal{O}(\log(\varepsilon^{-1}))$ [18]	$\mathcal{O}(n^2 \log(\varepsilon^{-1}))$
ADMM	$\mathcal{O}(n^2)$	$o(\varepsilon^{-1})$ [9, 20]	$o(n^2 \varepsilon^{-1})$
SDCA	$\mathcal{O}(n)$	$\mathcal{O}(\varepsilon^{-1})$ 39	$\mathcal{O}(n\varepsilon^{-1})$
ReHLine (ours)	$\mathcal{O}(n)$	$\mathcal{O}(\log(\varepsilon^{-1}))$	$\mathcal{O}(n\log(\varepsilon^{-1}))$

ReHLine has a provable linear convergence rate. The periteration computational complexity is linear in the sample size.

• Inspired by Coordinate Descent (CD) and Liblinear

Theorem 2. The Lagrangian dual problem of (6) is:

where $\boldsymbol{\xi} \in \mathbb{R}^{K}$, $\boldsymbol{\Lambda} = (\lambda_{li}) \in \mathbb{R}^{L \times n}$, and $\boldsymbol{\Gamma} = (\gamma_{hi}) \in \mathbb{R}^{H \times n}$ are dual variables, $\bar{\boldsymbol{U}}_{(3)} \in \mathbb{R}^{d \times nL}$ and $\bar{\boldsymbol{S}}_{(3)} \in \mathbb{R}^{d \times nH}$ are the mode-3 unfolding of the tensors $\bar{\boldsymbol{U}} = (u_{lij}) \in \mathbb{R}^{L \times n \times d}$ and $\bar{\boldsymbol{S}} = (s_{hij}) \in \mathbb{R}^{H \times n \times d}$, respectively, $u_{lij} = u_{li}x_{ij}$, $s_{hij} = s_{hi}x_{ij}$, \boldsymbol{I} is the identity matrix, and all inequalities are elementwise.

Moreover, the optimal point $\widehat{\beta}$ of (6) can be recovered as:

$$\widehat{\boldsymbol{\beta}} = \sum_{k=1}^{K} \widehat{\xi}_{k} \mathbf{a}_{k} - \sum_{i=1}^{n} \mathbf{x}_{i} \left(\sum_{l=1}^{L} \widehat{\lambda}_{li} u_{li} + \sum_{h=1}^{H} \widehat{\gamma}_{hi} s_{hi} \right) = \mathbf{A}^{\mathsf{T}} \widehat{\boldsymbol{\xi}} - \bar{\mathbf{U}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Lambda}}) - \bar{\mathbf{S}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Gamma}}).$$
(9)

The **linear** relationship between primal and dual variables greatly simplifies the computation of CD.

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly optimizes the dual problem 7 with respect to a single variable. For brevity, in this section we only illustrate the result for λ_{li} variables, and the full details are given in Appendix B

By excluding the terms unrelated to λ_{li} , we have $\lambda_{li}^{\text{new}} = \operatorname{argmin}_{0 < \lambda < 1} \mathcal{L}_{li}(\lambda)$, where

$$\begin{aligned} \mathcal{L}_{li}(\lambda) &= \frac{1}{2} u_{li}^2(\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i) \lambda^2 + \sum_{\substack{(l',i') \neq (l,i)}} \lambda_{l'i'} u_{l'i'} u_{li}(\mathbf{x}_{i'}^{\mathsf{T}} \mathbf{x}_i) \lambda - \sum_{k=1}^K \xi_k u_{li}(\mathbf{a}_k^{\mathsf{T}} \mathbf{x}_i) \lambda \\ &+ \sum_{\substack{h',i'}} u_{li} \gamma_{h'i'} \mathbf{x}_{i'}^{\mathsf{T}} \mathbf{x}_{i'} \lambda - v_{li} \lambda. \end{aligned}$$

Therefore, by simple calculations we obtain

$$\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\frac{u_{li} \mathbf{x}_{i}^{\mathsf{T}} \left(\sum_{k=1}^{K} \xi_{k} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{h',i'} \gamma_{h'i'} s_{h'i'} \mathbf{x}_{i'} \right) + v_{li}}{u_{li}^{2} \|\mathbf{x}_{i}\|_{2}^{2}} \right),$$
(10)

where $\mathcal{P}_{[a,b]}(x) = \max(a, \min(b, x))$ means projecting a real number x to the interval [a, b].

Clearly, assuming the values $\mathbf{x}_i^{\mathsf{T}} \mathbf{a}_k$ and $\|\mathbf{x}_i\|_2^2$ are cached, updating one λ_{li} value requires $\mathcal{O}(K+nd+nL+nH)$ of computation, and updating the whole $\mathbf{\Lambda}$ matrix requires $\mathcal{O}(nL(K+nd+nL+nH))$. Adding all variables together, the canonical CD update rule for one full cycle has a computational complexity of $\mathcal{O}((K+nd+nL+nH)(K+nL+nH))$.

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly optimizes the dual problem 7 with respect to a single variable. For brevity, in this section we only illustrate the result for λ_{li} variables, and the full details are given in Appendix B

By excluding the terms unrelated to λ_{li} , we have $\lambda_{li}^{\text{new}} = \operatorname{argmin}_{0 < \lambda < 1} \mathcal{L}_{li}(\lambda)$, where

$$\begin{aligned} \mathcal{L}_{li}(\lambda) &= \frac{1}{2} u_{li}^2(\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_i) \lambda^2 + \sum_{\substack{(l',i') \neq (l,i)}} \lambda_{l'i'} u_{l'i'} u_{li}(\mathbf{x}_{i'}^{\mathsf{T}} \mathbf{x}_i) \lambda - \sum_{k=1}^K \xi_k u_{li}(\mathbf{a}_k^{\mathsf{T}} \mathbf{x}_i) \lambda \\ &+ \sum_{h',i'} u_{li} \gamma_{h'i'} \mathbf{x}_{h'i'}^{\mathsf{T}} \mathbf{x}_i' \lambda - v_{li} \lambda. \end{aligned}$$

Therefore, by simple calculations we obtain

$$\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\frac{u_{li} \mathbf{x}_{i}^{\mathsf{T}} \left(\sum_{k=1}^{K} \xi_{k} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{h',i'} \gamma_{h'i'} \mathbf{x}_{h'i'} \mathbf{x}_{i'} \right) + v_{li}}{u_{li}^{2} \|\mathbf{x}_{i}\|_{2}^{2}} \right),$$
(10)

where $\mathcal{P}_{[a,b]}(x) = \max(a, \min(b, x))$ means projecting a real number x to the interval [a, b].

Clearly, assuming the values $\mathbf{x}_i^{\mathsf{T}} \mathbf{a}_k$ and $\|\mathbf{x}_i\|_2^2$ are cached, updating one λ_{li} value requires $\mathcal{O}(K+nd+nL+nH)$ of computation, and updating the whole $\mathbf{\Lambda}$ matrix requires $\mathcal{O}(nL(K+nd+nL+nH))$. Adding all variables together, the canonical CD update rule for one full cycle has a computational complexity of $\mathcal{O}((K+nd+nL+nH)(K+nL+nH))$

$$\widehat{\boldsymbol{\beta}} = \sum_{k=1}^{K} \widehat{\xi}_{k} \mathbf{a}_{k} - \sum_{i=1}^{n} \mathbf{x}_{i} \left(\sum_{l=1}^{L} \widehat{\lambda}_{li} u_{li} + \sum_{h=1}^{H} \widehat{\gamma}_{hi} s_{hi} \right) = \mathbf{A}^{\mathsf{T}} \widehat{\boldsymbol{\xi}} - \bar{\mathbf{U}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Lambda}}) - \bar{\mathbf{S}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Gamma}}).$$
(9)

Canonical CD updates. As a first step, we consider the canonical CD update rule that directly optimizes the dual problem 7 with respect to a single variable. For brevity, in this section we only illustrate the result for λ_{li} variables, and the full details are given in Appendix B

By excluding the terms unrelated to λ_{li} , we have $\lambda_{li}^{\text{new}} = \operatorname{argmin}_{0 < \lambda < 1} \mathcal{L}_{li}(\lambda)$, where

$$\mathcal{L}_{li}(\lambda) = \frac{1}{2} u_{li}^{2}(\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{i})\lambda^{2} + \sum_{\substack{(l',i')\neq(l,i)\\ (l',i')\neq(l,i)}} \lambda_{l'i'} u_{l'i'} u_{li}(\mathbf{x}_{i'}^{\mathsf{T}}\mathbf{x}_{i})\lambda - \mathbf{x}_{i'}^{\mathsf{T}}\mathbf{x}_{i'}\lambda - v_{li}\lambda.$$

Therefore, by simple calculations we obtain

ReHLine updates. The proposed ReHLine algorithm, on the other hand, significantly reduces the computational complexity of canonical CD by updating
$$\beta$$
 according to the KKT condition (9) after each update of a dual variable. To see this, let $\mu := (\xi, \Lambda, \Gamma)$ denote all the dual variables, and define

$$\boldsymbol{\beta}(\boldsymbol{\mu}) = \sum_{k=1}^{K} \xi_k \mathbf{a}_k - \sum_{i=1}^{n} \mathbf{x}_i \left(\sum_{l=1}^{L} \lambda_{li} u_{li} + \sum_{h=1}^{H} \gamma_{hi} s_{hi} \right).$$

$$\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\frac{u_{li} \mathbf{x}_{i}^{\mathsf{T}} \left(\sum_{k=1}^{K} \xi_{k} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{l=1}^{K} \mathbf{a}_{k} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{(l',i') \neq (l,i)} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{(l',i') \neq (l,i')} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{(l',i') \neq (l',i')} \lambda_{l'i'} u_{l'i'} \mathbf{x}_{i'} - \sum_{(l',i') \neq (l',i')} u_{l'i'} \mathbf{x}_{i'} \mathbf{x}_{i'$$

where
$$\mathcal{P}_{[a,b]}(x) = \max(a, \min(b, x))$$
 means projecting a real number

Clearly, assuming the values $\mathbf{x}_{i}^{\mathsf{T}} \mathbf{a}_{k}$ and $\|\mathbf{x}_{i}\|_{2}^{2}$ are cached, updating one $\lambda_{li} = \mathcal{P}_{[0,1]} \left(\lambda_{li} - \frac{u_{li}^{2} \|\mathbf{x}_{i}\|_{2}^{2}}{u_{li}^{2} \|\mathbf{x}_{i}\|_{2}^{2}}$ nL + nH) of computation, and updating the whole Λ matrix requires (Adding all variables together, the canonical CD update rule for one f Accordingly, the primal variable β is updated as complexity of $\mathcal{O}((K + nd + nL + nH)(K + nL + nH))$

$$\lambda_{li}^{\text{new}} = \mathcal{P}_{[0,1]} \left(\lambda_{li}^{\text{old}} - \frac{(\nabla_{\lambda_{li}} \mathcal{L})(\lambda^{\text{old}})}{u_{li}^2 \|\mathbf{x}_i\|_2^2} \right) = \mathcal{P}_{[0,1]} \left(\lambda_{li}^{\text{old}} + \frac{u_{li} \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}^{\text{old}} + v_{li}}{u_{li}^2 \|\mathbf{x}_i\|_2^2} \right).$$

$$\boldsymbol{\beta}^{\text{new}} = \boldsymbol{\beta}^{\text{old}} - (\lambda_{li}^{\text{new}} - \lambda_{li}^{\text{old}}) u_{li} \mathbf{x}_{i},$$

which can then be used for the next dual variable update. Simple calculations show that this scheme only costs O(d) of computation for one λ_{li} variable.

$$\widehat{\boldsymbol{\beta}} = \sum_{k=1}^{K} \widehat{\boldsymbol{\xi}}_{k} \mathbf{a}_{k} - \sum_{i=1}^{n} \mathbf{x}_{i} \left(\sum_{l=1}^{L} \widehat{\lambda}_{li} u_{li} + \sum_{h=1}^{H} \widehat{\gamma}_{hi} s_{hi} \right) = \mathbf{A}^{\mathsf{T}} \widehat{\boldsymbol{\xi}} - \bar{\mathbf{U}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Lambda}}) - \bar{\mathbf{S}}_{(3)} \operatorname{vec}(\widehat{\boldsymbol{\Gamma}}).$$
(9)

Table 5: The averaged running times (\pm standard deviation) of SOTA solvers on machine learning tasks. " λ " indicates cases where the solver produced an invalid solution or exceeded the allotted time limit. Speed-up refers to the speed-up in the averaged running time (on the largest dataset) achieved by ReHLine, where " ∞ " indicates that the solver fails to solve the problem.

Experiments

Software. generic/ specialized software

- cvx/cvxpy
- mosek (IPM)
- ecos (IPM)
- scs (ADMM)
- dccp (DCP)
- liblinear -> SVM
- hqreg -> Huber
- lightning -> sSVM

TASK		DATASET			ECOS		MOSEK		SCS	Γ	DCCP	REHLINE	
FairSV	νM	Sylva-p	1e-4) ine (×1e-2) prior (×1e-2) ard (×1e-1)		x 1550(±0 x 175(±0.		× 87.4(±0 × 64.2(±0	,	× 130(±42) × 161(±405)	113	x 7(±9.2) x x	$\begin{array}{r} 4.25(\pm \\ 1.03(\pm \\ 0.47(\pm \\ 0.64(\pm \end{array}$	$0.2) \\ 0.1)$
		Fail/Succeed Speed-up (on Creditca			<mark>2/2</mark> 273x		2/2 100x		<mark>2/2</mark> 252x		3/1 ∞	<mark>0/</mark> 4	
-	TASK		DATASET		ECOS		MOSEK		SC	s ReHI		LINE	
-	ElasticQR LD (×1e-4) Kin8nm (×1e-3) House-8L (×1e-3) Topo-2-1 (×1e-2) BT (×1e-0) Fail/Succeed Speed-up (on BT		Kin8nm (×1 House-8L (× Topo-2-1 (×	(×1e-3) (×1e-3) 88 (×1e-2) 475		x ±161) ±2015 ±2517	5) X		$63.1(\pm 58)$		$\begin{array}{c} 2.60(\pm \\ 4.12(\pm \\ 7.21(\pm \\ 3.04(\pm \\ 2.49(\pm \\ \end{array})$:0.95) :1.99) :0.49)	
-				3/2 2843x			$\frac{2}{3}$ $\frac{3}{3}$				5		
Task	SK DATASET			ECOS		MOSEK		SCS	Н	QREG	REHLINE		
RidgeHuł	ber	Kin8nn House-	isorders (×1e- n (×1e-3) &L (×1e-3) -1 (×1e-2) e-1)		x x 2620(±10 x	040)	x 925(± 267(± 2384(±	=1)	x x 213(±2) x	1.58 2.42 3.53		$\begin{array}{c} 1.40(\pm \\ 2.04(\pm \\ 0.80(\pm \\ 1.78(\pm \\ 5.28(\pm \end{array})))$:0.30) :0.21) :0.32)
		Fail/Su Speed-u	cceed 1p (on BT)		4/1 ∞		<mark>2/3</mark> 452	x	4/1 ∞		<mark>0/5</mark> 2.37x	0/:	5
TASK	DA	TASET		E	COS	М	OSEK	Ś	SCS	LIBLI	NEAR	REHLI	NE
SVM	SPF (×1e-4) Philippine (×1e-2) Sylva-prior (×1e-3) Creditcard (×1e-2)		★ 1653(±41) ★ 2111(±804)		86.5	$5(\pm 0.2)$ 153 31(± 2) 843		$7(\pm 27)$ (±146) (±1006) (±4510)	$\begin{array}{c} 12.7(\pm 0.1)\\ 1.80(\pm 0.02)\\ 16.0(\pm 0.6)\\ 23.1(\pm 2.5)\end{array}$		$\begin{array}{c} 3.90(\pm 0 \\ 0.82(\pm 0 \\ 4.08(\pm 0 \\ 5.08(\pm 1 \end{array}$.02) .84)	
		Fail/Succeed Speed-up (on Creditcard)		2/2 415x					<mark>0/</mark> 4 40x	<mark>0/</mark> 4 4.5x		<mark>0/</mark> 4	
TASK	DA	TASET		Sz	SAGA		SAG		SDCA		'RG	REHLI	INE
sSVM	SPI Phi Syl	SPF (×1e-4) Philippine (×1e-2) Sylva-prior (×1e-2) Creditcard (×1e-2)		39.9 24.3 3.37	$3(\pm 27.8)$ 5.5 7(± 9.81) 3.00		$3(\pm 5.0)$ $3(\pm 9.8)$ $0(\pm 0.56)$ $0(\pm 2.0)$	$\begin{array}{c} 15.0(\pm 2.4)\\ 1.47(\pm 0.19)\\ 1.57(\pm 0.23)\\ 14.0(\pm 1.9)\end{array}$		41.40 15.80 3.40((± 3.9) (± 6.8) $\pm 0.84)$ (± 1.4)	$\begin{array}{c} 4.80(\pm 1 \\ 0.89(\pm 0 \\ 0.86(\pm 0 \\ 6.36(\pm 1 \\ \end{array})$.20) .10) .14)
	Fail/Succeed Speed-up (on Creditcard)			<mark>0/</mark> 4 1.6x				0/4 0/4 2.2x 1.7:			<mark>0/</mark> 4		

Thank you!

