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Introduction Federated learning

Federated learning (FL)

Federated learning is a framework for learning predictive models from datasets that are

distributed

privacy-sensitive

heterogeneous

massive

This is accomplished through the
use of efficiently devised periodic
communications between a central
server and clients.

Figure: Simple example of Federated learning
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Introduction Motivation

Motivation

Federated averaging (FedAvg) [McMahan et al., 2017] is proposed to train deep
networks, which could be nondifferentiable and nonconvex (e.g., ReLU).

[Stich, 2019], [Stich & Karimireddy, 2019], [Zhou & Cong, 2018], [Wang & Joshi,
2021], [Li et al., 2020], [Khaled et al., 2020]

Hyperparameter optimization in ML and FL.
Bilevel models where the lower-level is a parameterized training model while
the upper-level requires selecting the best configuration for the unknown
hyperparameters. [Ghadimi & Wang, 2018], [Ji et al., 2021], [Tibshirani et al., 2005]

Minimax FL problems. Recently, FL was extended to distributed minimax problems,
but relatively little exists in nonsmooth nonconvex-strongly concave settings.

[Mohri et al., 2019], [Deng et al., 2020], [Sharma et al., 2022], [Tarzanagh et al., 2022]

Research on such problems has relied on strong assumptions, including
differentiability and L-smoothness of the local loss function or the implicit function.
Such assumptions may fail to hold in practical settings.

Goal: A unified FL framework accommodating nondifferentiable and nonconvex settings
as well as allowing for bilevel or minimax interactions.
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A federated zeroth-order framework

Nondifferentiable nonconvex bilevel FL

Consider a bilevel FL problem of the form

min
x ∈X ≜

⋂m
i=1Xi

{
f (x)≜

1

m

m

∑
i=1

Eξi∈Di
[ f̃i (x ,y(x),ξi ) ]

}
, (FLbl )

where

y(x) ∈ arg min
y∈Rñ

1

m

m

∑
i=1

E
ζi∈D̃i

[h̃i (x ,y ,ζi )].

f is possibly nondifferentiable and nonconvex, y(•) : Rn → Rñ is a single-valued map

returning the unique solution to the lower-level problem at x .

Even if the upper-level objective function is smooth and convex in (x,y), the implicit
function f (•,y(•)) is often nondifferentiable nonconvex in x!
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A federated zeroth-order framework Randomized smoothing

Randomized smoothing

For smoothening of the loss function f , we employ a randomized smoothing
approach where the smoothing parameter is maintained as sufficiently small. This
framework is rooted in the seminal work [Steklov, 1907], leading to progress in both
convex and nonconvex regimes.

[Lakshmanan & Farias, 2008], [Yousefian et al., 2012], [Duchi et al., 2012]

[Nesterov & Spokoiny, 2017]

We consider a smoothing of f , given by fη defined as

f η (x)≜ Eu∈B[f (x+ηu)],

where u is a random vector in the unit ball B, defined as B≜ {u ∈ Rn | ∥u∥ ≤ 1}.

Further, S denotes the surface of the ball B, i.e., S≜ {v ∈ Rn | ∥v∥= 1} and ηB and
ηS denote ball with radius η and its surface, respectively.

The gradient of the smoothed function is

∇f η (x) =
n

η
Ev∈ηS

[
(f (x+v)− f (x))

v

∥v∥

]
.

[Cui et al., 2022]
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A federated zeroth-order framework Randomized smoothing

Construct a zeroth-order gradient

f(x) ≜ f (x)+ 1
m

m

∑
i=1

IXi
(x)

⇓ (Randomized smoothing + Moreau smoothing)

fη (x) ≜ f η (x)+ 1
m

m

∑
i=1

Iη

Xi
(x)

fη (x)≜ 1
m

m

∑
i=1

(
Eui ∈B[Eξi

[ f̃i (x+ηui ,y(x+ηui ),ξi ) ]]
)
+ 1

2dist
2(x ,Xi ).

⇓ (Implicit gradient)

∇fη (x)≜ 1
m

m

∑
i=1

(
Evi [Eξi

[ n
η

f̃i (x+vi ,y(x+vi ),ξi )−f̃i (x ,y(x),ξi )
∥vi∥ vi ]]+

1
η
(x−PXi

(x))
)
.

⇓ (Inexact evaluation of stoch. zeroth-order local gradient)

∇̃fη

i (x)≜
n
η

f̃i (x+vi ,yε (x+vi ),ξi )−f̃i (x ,yε (x),ξi )
∥vi∥ vi +

1
η
(x−PXi

(x)).
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Federated bilevel/minimax framework Algorithm

Proposed algorithm for FLbl

Algorithm Randomized Implicit Zeroth-Order Federated Averaging (FedRZObl )

1: input: Server chooses a random x̂0 ∈ X , stepsize γ, smoothing parameter η, synchro-
nization indices T0 := 0 and Tr ≥ 1, where r ≥ 1 is the upper-level communication
round index

2: for r = 0,1, . . . do
3: Server generates a random replicate vTr

∈ ηS
4: Server calls a lower-level federated algorithm to receive yεr (x̂r + vTr

) and yεr (x̂r ),
denoting the inexact evaluations of y(x̂r +vTr

) and y(x̂r ), respectively.
5: Server broadcasts x̂r , x̂r +vTr

, yεr (x̂r ), and yεr (x̂r +vTr
) to all clients; xi ,Tr

:= x̂r , ∀i
6: for k = Tr , . . . ,Tr+1−1 in parallel by clients do
7: Client i generates the random replicates ξi ,k ∈Di

8: gη ,εr
i ,k := n

η2

(
f̃i (xi ,k +vTr

,yεr (x̂r +vTr
),ξi ,k)− f̃i (xi ,k ,yεr (x̂r ),ξi ,k)

)
vTr

↑ ↑
(delayed inexact computation of y(x) can reduce communications significantly!)

9: Client i does a local update as xi ,k+1 := xi ,k − γ

(
gη ,εr
i ,k + 1

η

(
xi ,k −PXi

(xi ,k )
))

10: end for
11: Server receives xi ,Tr+1

from all clients and aggregates, i.e., x̂r+1 :=
1
m ∑

m
i=1 xi ,Tr+1

12: end for
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Federated bilevel/minimax framework Convergence theory

Assumptions

Consider problem (FLbl ). Let the following assumptions hold.

(i) For all i ∈ [m], f̃i (•,y ,ξi ) is Lf0,x (ξi )-Lipschitz for any y and f̃i (x ,•,ξi ) is

Lf0,y (ξi )-Lipschitz for any x , where Lf0,x ≜ max
i=1,...,m

√
E[(Lf0,x (ξi ))2]< ∞ and

Lf0,y ≜ max
i=1,...,m

√
E[(Lf0,y (ξi ))2]< ∞.

(ii) [Lower-level] For all i ∈ [m], for any x , hi (x ,•) is Lh1,y -smooth and µh-strongly convex.

Further, for any y , the map ∇yhi (•,y) is Lipschitz continuous with parameter L∇h
0,x .

(iii) The sets Xi , for i ∈ [m], a bounded set-dissimilarity condition holds for all x ∈Rn and
some scalars B1 and B2.

1
m

m

∑
i=1

dist2(x ,Xi )≤ B2
1 +B2

2 dist2(x , 1
m

m

∑
i=1

PXi
(x)).

*It is when the bounded gradient dissimilarity assumption [Karimireddy et al., 2019] is
written for the local functions.
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Federated bilevel/minimax framework Convergence theory

Theorem (FedRZObl when using an arbitrary inexact FL method for lower-level)

Let Assumption 2 hold. Let k∗ be chosen uniformly at random from 0, . . . ,K := TR −1 and let

γ ≤min

max
{
2,
√
0.1Θ3 ,4B2

√
3Θ2 ,4B2

√
3Θ3

}−1

4H ,
η

24(L
imp
0 n+1)

. Let εr denote the inexactness in obtaining the lower-level solution, i.e.,

E
[
∥yεr (x)−y(x)∥2

]
≤ εr for x ∈ ∪Rr=0{x̂r , x̂r +vTr }.

(i) (Error bound) We have

E
[
∥∇fη (x̄k∗ )∥

2
]
≤ 8(γK)−1(E

[
fη (x0)

]
− fη ,∗)+ 8γΘ1

m +8H2
γ
2 max{Θ2 ,Θ3}Θ5

+8
(
H2

γ
2 max{Θ2 ,Θ3}Θ4 +Θ3

)
H

∑
R−1
r=0 εr
K , where

Θ1 :=
9(L

imp
0 n+1)n2

2η

(
2ν2f
η2 +(L

imp
0 )2

)
, Θ2 :=

5(L
imp
0 n+1)2

8η2 ,Θ3 :=

 L∇h
0,x
µh

2

60n2

η2

(
2ν2f
η2 +(Lf0,y )

2

)
,

Θ4 := 144n2

η2

(
2ν2f
η2 +(Lf0,y )

2

)
,Θ5 :=

(
36n2

(
2ν2f
η2 +(L

imp
0 )2

)
+

24B2
1

η2 +48B2
2 (L

imp
0 )2n2

)
.

(ii) (Iteration complexity) Let γ :=
√

m
K and H :=

⌈
4
√

K
m3

⌉
. Let Kε denotes the number of iterations such that E

[
∥∇fη (x̄k∗ )∥

2
]
≤ ε. Suppose

lower-level FL method has a linear speedup of the order εr := Õ( 1
mr ), where the lower-level FL method is terminated after r (communication round of

upper-level) iterations. Then, the iteration complexity of FedRZObl is

Kε := Õ

Θ2
1+max{Θ2 ,Θ3}2Θ2

5
mε2

+
(max{Θ2 ,Θ3}Θ4)

0.8

m1.8ε0.8
+

Θ
4/3
3

m7/3ε4/3

 .

(iii) (Communication complexity) Suppose Kε ≥m3 . Then, the number of communication rounds in FedRZObl (upper-level only) to achieve the accuracy

level in (ii) is R :=O
(
(mKε )

3/4
)
.
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Federated bilevel/minimax framework Convergence theory

Total communication complexity

Table: Communication complexity for nondifferentiable nonconvex, bilevel, and minimax FL.

heterogeneous upper level lower level (standard FL schemes are employed) total (this work)

O
(
(mK)

3
4

)
(Prop. 1, Thm. 1)

(this work)

[Khaled et al., 20]
Local SGD (i.i.d.)

O(m) O
(
m

7
4 K

3
4

)

[Yuan & Ma, 20]
FedAc (i.i.d.)

O
(
m

1
3

)
O
(
m

13
12 K

3
4

)

[Haddadpour & Mahdavi, 19]
LFD (non-i.i.d.)

O
(
m

1
3 r

1
3

)
O
(
m

4
3 K
)

In all cases, we assume heterogeneous data in the upper level. In the lower level,
depending on what conventional FL scheme is employed, we obtain the communication
complexity accordingly.
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Federated bilevel/minimax framework Approximate Clarke stationarity

Approximate Clarke stationarity

Recent findings on nonsmooth analysis [Zhang et al., 2020] shown that for a suitable class
of nonsmooth functions, computing an ε-stationary point, is impossible in finite time.

As a weakening of ε-stationarity, a notion of (δ ,ε)-stationarity is introduced [Zhang et
al., 2020] for a vector x̄ when dist(0n,∂δ f(x̄))≤ ε, where the set

∂δ f(x)≜ conv{ζ : ζ ∈ ∂ f(y),∥x−y∥ ≤ δ}

denotes the δ -Clarke generalized gradient of f at x [Goldstein, 1977];

i.e. if x is (δ ,ε)-stationary, then there exists a convex combination of gradients in a
δ -neighborhood of x that has a norm of at most ε [Shamir, 2021].

Realation between original problem with its smoothed counterpart: if ∇fη (x) = 0,
then 0n ∈ ∂2η f(x). [Mayne and Polak, 1984]
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Numerical Experiments

Federated training of ReLU neural network

We implement our method on a single-layer ReLU NN.

min
x :=(Z ,w)∈X

1

2m

m

∑
i=1

∑
ℓ∈Di

(vi ,ℓ−
N1

∑
q=1

wqσ(Z•,qUi ,ℓ))
2+

λ

2

(
∥Z∥2F +∥w∥2

)
,

σ(x) := max{0,x}.

Setting (S1) with η = 0.1 (S2) with η = 0.01 (S3) with η = 0.001
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Figure: The proposed method improves with larger number of local steps H. Robustness of the
scheme in terms of the original loss function, slight improvement in the empirical speed of
convergence in early steps, as η increases.
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Numerical Experiments

Federated hyperparameter learning
We consider an FL hyperparameter learning problem for binary classification using logistic
loss.

minx∈X , y∈Rn f (x ,y)≜
1

m

m

∑
i=1

∑
ℓ∈Di

log
(
1+exp(−vi ,ℓU

T
i ,ℓy)

)

subject to. y ∈ arg min
y∈Rn

h(x ,y)≜
1

m

m

∑
i=1

 ∑
ℓ̃∈D̃i

log
(
1+exp(−vi ,ℓ̃U

T
i ,ℓ̃
y)
)
+xi

∥y∥2

2

 ,

where xi denotes the regularization parameter (decision variable of the upper-level FL problem)

for client i , Ui ,ℓ ∈ Rn/Ui ,ℓ̃ ∈ Rn and vi ,ℓ ∈ {−1,1}/vi ,ℓ̃ ∈ {−1,1} are the ℓth/ℓ̃th input and output

testing/training sample of client i , respectively.
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Figure: Convergence of FedRZObl in hyperparameter FL for ℓ2 regularized logistic loss, where we
plot the loss function on test data for different values of local steps with 95% CIs.
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Numerical Experiments

Fair classification learning
Here, we study the performance of FedRZObl in minimax FL. We consider solving an FL
minimax formulation of the fair classification problem [Nouiehed et al., 2019].

min
x∈Rn

max
y∈Rc

1

m

m

∑
i=1

C

∑
c=1

∑
ℓ∈Di ,c

(
vi ,ℓ−

N1

∑
q=1

wqσ(Z•,qUi ,ℓ)

)2

− λ

2
∥y∥2,

where c denotes the class index and Di ,c denotes the portion of local dataset associated
with client i that is comprised of class c samples.

This problem is nondifferentiable nonconvex-strongly concave, fitting well with the
assumptions in our work in addressing minimax FL problems.
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Figure: Test accuracy of FedRZObl in minimax FL with different upper-level communication
frequency. In terms of communication rounds, we observe that the performance of the method
improves by using a larger number of local steps, motivating the need for the FL framework.
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Conclusion

Concluding remarks

Federated learning has an important role in distributed ML. However, no existing FL
scheme can provably address both nondifferentiability and nonconvexity.

We resolve this gap via devising a unified, provably convergent, and
communication-efficient randomized implicit zeroth-order method (with delayed
inexact computation of y(x)) for addressing bilevel FL and minimax FL problems.

Our methods can contend with both nondifferentiability and nonconvexity for
computing approximate Clarke-stationary points.

We derive iteration and communication complexity guarantees.
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Thank you for your attention!

If you are interested in details, please see our full paper. We welcome any
discussions!

Contact: yuyang.qiu@rutgers.edu
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