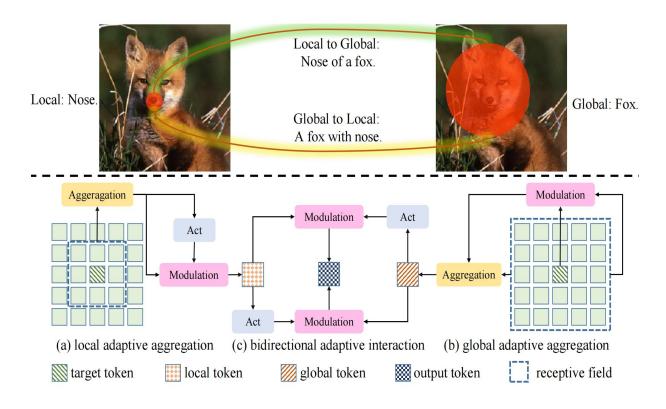


Lightweight Vision Transformer with Bidirectional Interaction

Qihang Fan^{1,2}, Huaibo Huang¹, Xiaoqiang Zhou^{1,3}, Ran He^{1,2}

¹MAIS & CRIPAC, Institute of Automation, Chinese Academy of Sciences, Beijing, China ²School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China ³University of Science and Technology of China, Hefei, China

Introduction



Local to Global: Nose of a fox. Local: Nose. Global: Fox. Global to Local: A fox with nose. Modulation + Aggeragation Modulation ← Act Aggregation + Modulation Modulation (a) local adaptive aggregation (c) bidirectional adaptive interaction (b) global adaptive aggregation arget token local token global token output token receptive field

Parallel/Sequential Local—Global

Local—Global Bidirectional Interaction

Fully Adaptive Self—Attention(FASA)

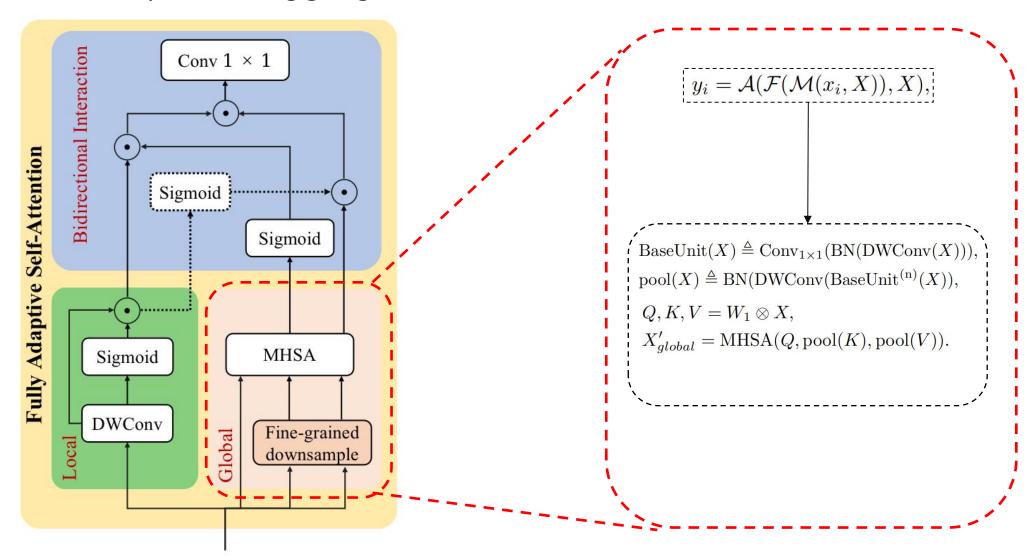
Three operators in FASA

- 1. Global Adaptive Aggregation
- 2. Local Adaptive Aggregation
- 3. Bidirectional Adaptive Interaction

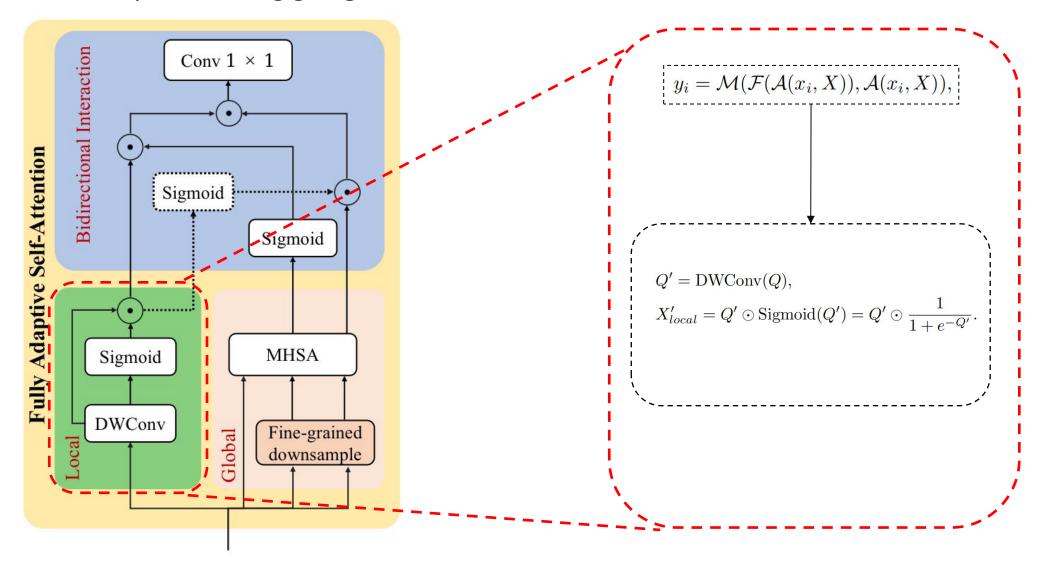
All based on Context—Aware Feature Aggregation

Global Adaptive Aggregation:

$$y_i = \mathcal{A}(\mathcal{F}(\mathcal{M}(x_i, X)), X),$$

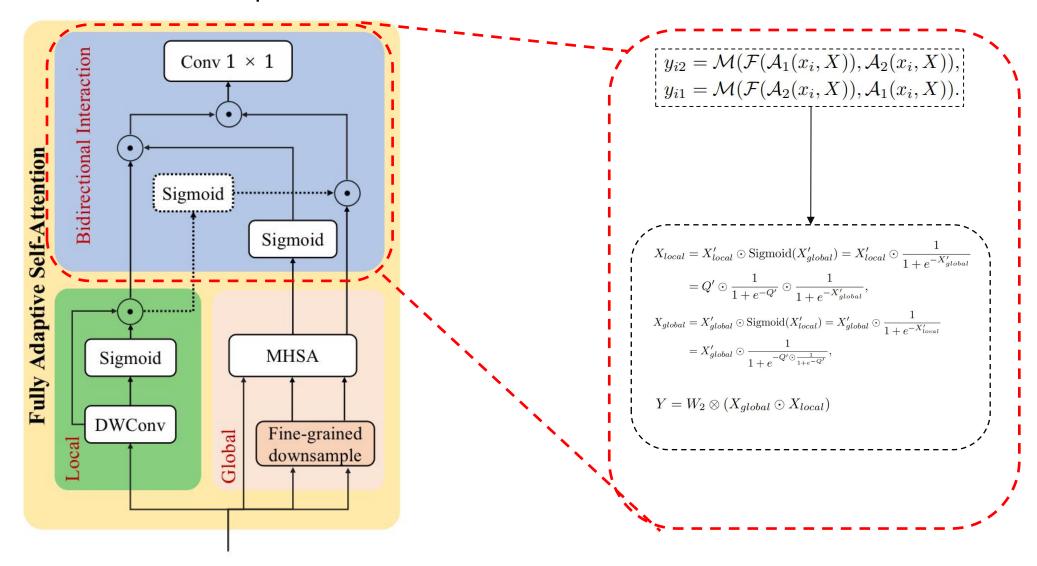

Local Adaptive Aggregation:

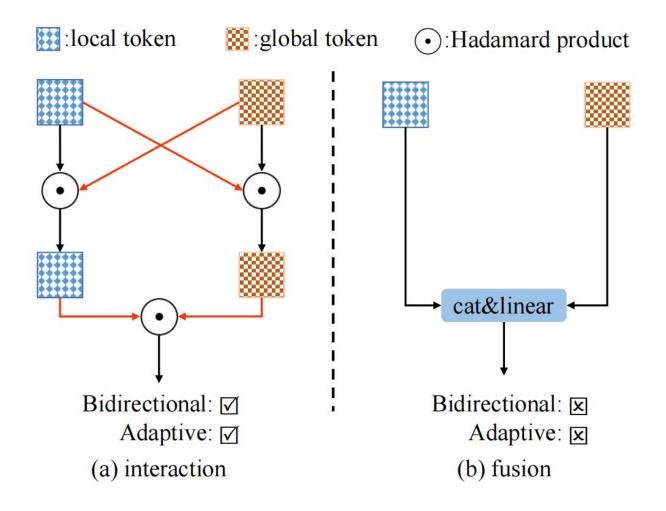
$$y_i = \mathcal{M}(\mathcal{F}(\mathcal{A}(x_i, X)), \mathcal{A}(x_i, X)),$$


Bidirectional Adaptive Interaction:

$$y_{i2} = \mathcal{M}(\mathcal{F}(\mathcal{A}_1(x_i, X)), \mathcal{A}_2(x_i, X)),$$

$$y_{i1} = \mathcal{M}(\mathcal{F}(\mathcal{A}_2(x_i, X)), \mathcal{A}_1(x_i, X)).$$


Global Adaptive Aggregation

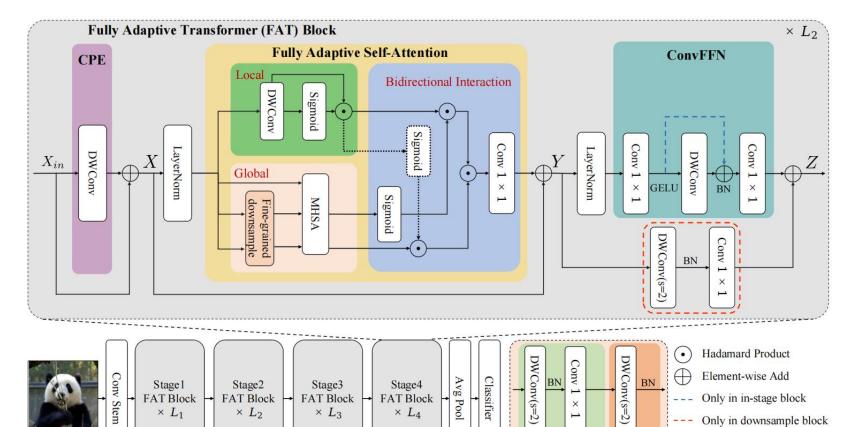

Local Adaptive Aggregation

Bidirectional Adaptive Interaction

"Interaction" v.s. "Fusion"

Overall Architecture

Stage 1


FAT Block

 $\times L_1$

Stage2

FAT Block

 $\times L_2$

Stage4

FAT Block

Stage3

FAT Block

 $\times L_3$

DWConv(s=2)

- 1. Hierarchical Stages
- 2. Conditional Positional Encoding (CPE)
- 3. Fully Adaptive Self-Attention (FASA)
- Convolutional Feed-Forward Network (ConvFFN)

For one block:

Element-wise Add

····· Omitted for simplicity

Only in in-stage block

Only in downsample block

$$X = CPE(X_{in}) + X_{in},$$

$$Y = \text{FASA}(\text{LN}(X)) + X,$$

$$Z = \text{ConvFFN}(\text{LN}(Y)) + \text{ShortCut}(Y).$$

Size (M)	Model	Input	Params (M)	FLOPs (G)	Throughput (img/s)	Top-1 (%)	Size (M)	Model	Input	Params (M)	FLOPs (G)	Throughput (img/s)	Top-1 (%)
	T2T-ViT-7 73	$ 224^{2}$	4.3	1.1	1762	71.7	100	XCiT-T24 14	224^{2}	12.1	2.3	1194	79.4
	QuadTree-B-b0 52	224^{2}	3.5	0.7	885	72.0		ResT-S [78]	224^{2}	13.7	1.9	918	79.6
	TNT-Tiny [18]	224^{2}	6.1	1.4	545	73.9		Shunted-T 47	224^{2}	11.5	2.1	957	79.8
	Ortho-T 25	224^{2}	3.9	0.7		74.0		DeiT-S 54	224^{2}	22.1	4.6	899	79.9
	EdgeViT-XXS [40]	224^{2}	4.1	0.6	1926	74.4		QuadTree-B-b1 52	224^{2}	13.6	2.3	543	80.0
	MobileViT-XS 38	256^{2}	2.3	1.1	1367	74.8	10	RegionViT-Ti [2]	224^{2}	13.8	2.4	710	80.4
5	LVT 66	224^{2}	5.5	0.9	1265	74.8	, 15	Wave-MLP-T 53	224^{2}	17.0	2.4	1052	80.6
~ 0	CPVT-Ti-GAP 6	224^{2}	5.8	1.3	_	74.9	~	MPViT-XS 28	224^{2}	10.5	2.9	597	80.9
_	EdgeNeXt-XS 37	256^{2}	2.3	0.5	1417	75.0	10	EdgeViT-S 40	224^{2}	11.1	1.9	1049	81.0
	PVT-T 57	224^{2}	13.2	1.6	1233	75.1		VAN-B1 [17]	224^{2}	13.9	2.5	995	81.1
	ViT-C 63	224^{2}	4.6	1.1	-	75.3		Swin-T 34	224^{2}	29.0	4.5	664	81.3
	VAN-B0 [17]	224^{2}	4.1	0.9	1662	75.4		CrossFormer-T 59	224^{2}	27.8	2.9	929	81.5
	ViL-Tiny [77]	224^{2}	6.7	1.4	857	76.3	6.4	ResT-B [78]	224^{2}	30.3	4.3	588	81.6
	CeiT-T [72]	224^{2}	6.4	1.2		76.4		EfficientNet-B3 [51]	300^{2}	12.0	1.8	634	81.6
	FAT-B0	224^{2}	4.5	0.7	1932	77.6		FAT-B2	224^{2}	13.5	2.0	1064	81.9
8	T2T-ViT-12 73	$ 224^{2}$	6.9	1.9	1307	76.5	-	DAT-T [61]	$ 224^{2}$	29	4.6	577	82.0
	Rest-lite [78]	224^{2}	10.5	1.4	1123	77.2	77.2	FocalNet-T 67	224^{2}	29	4.4	610	82.1
	XCiT-T12 14	224^{2}	6.7	1.2	1676	77.1		Focal-T 68	224^{2}	29	4.9	301	82.2
	EdgeViT-XS 40	224^{2}	6.7	1.1	1528	77.5		CrossFormer-S 59	224^{2}	31	4.9	601	82.5
	CoaT-Lite-T 64	224^{2}	5.7	1.6	1045	77.5		RegionViT-S [2]	224^{2}	31	5.3	460	82.6
792	SiT-Ti w/o FRD 83	224^{2}	15.9	1.0	1057	77.7	0	DaViT-T 10	224^{2}	28	4.5	616	82.8
~ 10	RegNetY-1.6GF 44	224^{2}	11.2	1.6	1241	78.0	30	WaveViT-S 70	224^{2}	20	4.3	482	82.7
	MPViT-T 28	224^{2}	5.8	1.6	737	78.2	2	QuadTree-B-b2 52	224^{2}	24	4.5	299	82.7
50	MobileViT-S 38	256^{2}	5.6	2.0	898	78.4	25	CSWin-T [12]	224^{2}	23	4.3	591	82.7
	ParC-Net-S 76	256^{2}	5.0	1.7	1321	78.6		MPViT-S [28]	224^{2}	23	4.7	410	83.0
	PVTv2-B1 58	224^{2}	13.1	2.1	1007	78.7		HorNet-T 46	224^{2}	23	4.0	586	83.0
	PerViT-T 39	224^{2}	7.6	1.6	1402	78.8		FAT-B3-ST	224^{2}	29	4.7	641	83.0
	CoaT-Lite-Mi 64	224^{2}	11.0	2.0	963	79.1		ConvNeXt-S 35	224^{2}	50	8.7	405	83.1
	EfficientNet-B1 51	240^{2}	7.8	0.7	1395	79.2		LITv2-M 41	224^{2}	49	7.5	436	83.3
	FAN-T-ViT 81	224^{2}	7.3	1.3	1181	79.2		EfficientFormer-L7 30	224^{2}	82	10.2	368	83.3
	EdgeNext-S 37	224^{2}	5.6	1.3	1243	79.4		iFormer-S [48]	224^{2}	20	4.8	471	83.4
	FAT-B1	224^{2}	7.8	1.2	1452	80.1		FAT-B3	224^{2}	29	4.4	474	83.6

Comparison with the state-of-the-art on ImageNet-1K classification

Model	Params(M)	$FLOPs(G) \downarrow$	CPU(ms) ↓	GPU(ms) ↓	Trp(imgs/s)↑	Top1-acc(%)
EdgeViT-XXS [40]	4.1	0.6	43.0	14.2	1926	74.4
MobileViT-XS 38	2.3	1.1	100.2	15.6	1367	74.8
tiny-MOAT-0 65	3.4	0.8	61.1	14.7	1908	75.5
FAT-B0	4.5	0.7	44.3	14.4	1932	77.6
EdgeViT-XS [40]	6.7	1.1	62.7	15.7	1528	77.5
ParC-Net-S [76]	5.0	1.7	112.1	15.8	1321	78.6
EdgeNext-S [37]	5.6	1.3	86.4	14.2	1243	79.4
FAT-B1	7.8	1.2	62.6	14.5	1452	80.1
ParC-ResNet50 [76]	23.7	4.0	160.0	16.6	1039	79.6
tiny-MOAT-2 65	9.8	2.3	122.1	15.4	1047	81.0
EfficientNet-B3 [51]	12.0	1.8	124.2	25.4	624	81.6
FAT-B2	13.5	2.0	93.4	14.6	1064	81.9

Comparison with the state-of-the-art lighweight model on efficiency and performance

Model	Params(M)	FLOPs(G)	Top1-acc(%)	AP^b	AP^m
Swin-S [34]	50	8.7	83.0	44.8	40.9
Focal-S [68]	5 1	9.1	83.5	47.4	42.8
CMT-B [16]	46	9.3	84.5	_	_
FAT-B4	52	9.3	84.8	49.7	44.8
CSwin-B [12]	78	15.0	84.2		_
MOAT-2 [65]	73	17.2	84.7	_	_
CMT-L [16]	75	19.5	84.8	_	_
FAT-B5	88	15.1	85.2	_	_

Comparison with general backbones.

Backbone				aNet 1×				Mask R-CNN 1×						
Dackbolle	Params(M)	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	Params(M)	AP^b	AP_{50}^b	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^{m}
DFvT-T [15]	-	-	-	-	_	_	_	25	34.8	56.9	37.0	32.6	53.7	34.5
PVTv2-B0 58	13	37.2	57.2	39.5	23.1	40.4	49.7	24	38.2	60.5	40.7	36.2	57.8	38.6
QuadTree-B-b0 52	13	38.4	58.7	41.1	22.5	41.7	51.6	24	38.8	60.7	42.1	36.5	58.0	39.1
EdgeViT-XXS 40	13	38.7	59.0	41.0	22.4	42.0	51.6	24	39.9	62.0	43.1	36.9	59.0	39.4
FAT-B0	14	40.4	61.6	42.7	24.0	44.3	53.1	24	40.8	63.3	44.2	37.7	60.2	40.0
DFvT-S [15]	_	-	=	12	-	_	7-2	32	39.2	62.2	42.4	36.3	58.9	38.6
EdgeViT-XS [40]	16	40.6	61.3	43.3	25.2	43.9	54.6	27	41.4	63.7	45.0	38.3	60.9	41.3
ViL-Tiny [77]	17	40.8	61.3	43.6	26.7	44.9	53.6	27	41.4	63.5	45.0	38.1	60.3	40.8
MPViT-T [28]	17	41.8	62.7	44.6	27.2	45.1	54.2	28	42.2	64.2	45.8	39.0	61.4	41.8
FAT-B1	17	42.5	64.0	45.1	26.9	46.0	56.7	28	43.3	65.6	47.4	39.6	61.9	42.8
PVTv1-Tiny 57	23	36.7	56.9	38.9	22.6	38.8	50.0	33	36.7	59.2	39.3	35.1	56.7	37.3
ResT-Small [78]	23	40.3	61.3	42.7	25.7	43.7	51.2	33	39.6	62.9	42.3	37.2	59.8	39.7
PVTv2-B1 58	24	41.2	61.9	43.9	25.4	44.5	54.3	34	41.8	64.3	45.9	38.8	61.2	41.6
DFvT-B [15]	-	-	-	-	-	-	-	58	43.4	65.2	48.2	39.0	61.8	42.0
QuadTree-B-b1 52	24	42.6	63.6	45.3	26.8	46.1	57.2	34	43.5	65.6	47.6	40.1	62.6	43.3
EdgeViT-S 40	23	43.4	64.9	46.5	26.9	47.5	58.1	33	44.8	67.4	48.9	41.0	64.2	43.8
MPViT-XS 28	20	43.8	65.0	47.1	28.1	47.6	56.5	30	44.2	66.7	48.4	40.4	63.4	43.4
FAT-B2	23	44.0	65.2	47.2	27.5	47.7	58.8	33	45.2	67.9	49.0	41.3	64.6	44.0
Swin-T 34	38	41.5	62.1	44.2	25.1	44.9	55.5	48	42.2	64.6	46.2	39.1	61.6	42.0
DAT-T [61]	38	42.8	64.4	45.2	28.0	45.8	57.8	48	44.4	67.6	48.5	40.4	64.2	43.1
DaViT-Tiny [10]	39	44.0	-	-	-	-	-	48	45.0	-	-	41.1	-	-
CMT-S [16]	44	44.3	65.5	47.5	27.1	48.3	59.1	45	44.6	66.8	48.9	40.7	63.9	43.4
MPViT-S [28]	32	45.7	57.3	48.8	28.7	49.7	59.2	43	46.4	68.6	51.2	42.4	65.6	45.7
QuadTree-B-b2 52	35	46.2	67.2	49.5	29.0	50.1	61.8	45	46.7	68.5	51.2	42.4	65.7	45.7
CSWin-T [12]	-	-	-	-		(-)	-	42	46.7	68.6	51.3	42.2	65.6	45.4
Shunted-S [47]	32	45.4	65.9	49.2	28.7	49.3	60.0	42	47.1	68.8	52.1	42.5	65.8	45.7
FAT-B3	39	45.9	66.9	49.5	29.3	50.1	60.9	49	47.6	69.7	52.3	43.1	66.4	46.2

Comparison to other backbones using RetinaNet and Mask-RCNN on COCO val2017 object detection and instance segmentation.

Ablation Study

Model	Params(M)	mageNet-1K FLOPs(G)	AP^b	AP^m	ADE20K mIoU	
MIOUCI	Tarams(wi)	TLOI 5(O)	Top-1(%)	ЛІ	ΛI	IIIOO
add+linear	4.5	0.72	76.2	39.0	35.8	39.6
cat+linear	4.8	0.77	76.6	39.6	36.3	40.2
mul+linear	4.5	0.72	77.1	40.3	37.1	40.9
interaction	4.5	0.72	77.6	40.8	37.7	41.5
pool down	4.4	0.71	77.2	40.2	36.9	40.6
conv w/o overlap	4.4	0.71	77.2	40.3	36.9	40.8
conv w/ overlap	4.5	0.71	77.3	40.5	37.3	40.9
refined down	4.5	0.72	77.6	40.8	37.7	41.5
w/o conv. pos	4.4	0.70	77.4	40.5	37.3	41.2
conv. pos	4.5	0.72	77.6	40.8	37.7	41.5

Method	Params (M)	FLOPs (G)	Top1-acc (%)		
Max-SA [55]	4.3	0.8	75.7		
WSA/S-WSA [34]	4.3	0.8	76.1		
SRA [57]	4.4	0.7	76.2		
LSA/GSA [5]	4.3	0.7	76.6		
CSWSA [12]	4.3	0.8	76.8		
FASA	4.5	0.7	77.6		

Main components analysis

Different self-attention mechanisms comparison

Model	Blocks	Channels	Params(M)	FLOPs(G)	Top-1 acc(%)
Swin-T [34]	[2, 2, 6, 2]	[96, 192, 384, 768]	29	4.5	81.3
DAT-T [61]	[2, 2, 6, 2]	[96, 192, 384, 768]	29	4.6	82.0
FocalNet-T 67	[2, 2, 6, 2]	[96, 192, 384, 768]	28	4.4	82.1
Focal-T [68]	[2, 2, 6, 2]	[96, 192, 384, 768]	29	4.9	82.2
FAT-B3-ST	[2, 2, 6, 2]	[96, 192, 384, 768]	29	4.7	83.0

Comparison with four baseline models when use the same layout with Swin-T.

Summary

- an efficient vision Transformer backbone
- Fully Adaptive Self—Attention
- superior performance on many downstream vision tasks

References

- Inception Transformer. In NeurIPS, 2022.
- EdgeViTs: Competing Light—weight CNNs on Mobile Devices with Vision Transformers. In ECCV, 2022.
- Lightweight Vision Transformer with Bidirectional Interaction. In NeurIPS, 2023.

Lightweight Vision Transformer with Bidirectional Interaction

Thanks

Code Link

Group's Homepage