

Adaptive Normalization for Non-stationary Time Series Forecasting: A Temporal Slice Perspective

Zhiding Liu^{1,2}, Mingyue Cheng^{1,2}, Zhi Li³, Zhenya Huang^{1,2}, Qi Liu^{1,2}, Yanhu Xie⁴, Enhong Chen^{1,2*}

 ¹Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China
 ²State Key Laboratory of Cognitive Intelligence
 ³Shenzhen International Graduate School
 ⁴The First Affiliated Hospital of University of Science and Technology of China

Presenter: Zhiding Liu

Anhui Province Key Laboratory of Big Data Analysis and Application, State Key Laboratory of Cognitive Intelligence

Introduction

- □ What is time series?
 - □ Any signals collected in chronological order.
 - □ Ubiquitous/Noisy & Chaotic/Extremely long/Multivariate
- □ What is forecasting?
 - □ Given the observation of past S time steps, predict the values of future T steps.
 - □ Temporal/Channel dependence
- □ Why forecasting?
 - □ Weather report
 - □ Healthcare analysis
 - Decision making

□ ...

Introduction

3

- Tremendous efforts have been devoted in designing powerful networks and therefore greatly advanced the accuracy of forecasting performance.
- □ The intrinsic **non-stationary property** hinders the generalizability of deep-learning-based models.
 - □ The distribution shift in time series, i.e., $\forall_{i,j} p(x^i) \neq p(x^j)$
 - □ Existing forecasting methods barely rely on the non-linear capacity to tackle the challenge.
- □ To **explicitly alleviate the impact of non-stationarity**, adaptive normalization on input series is the feasible and mainstream solution.
 - □ Ensure the inputs are *I.I.D.* through normalization.

4

Methodology

Motivation

Existing normalization methods are based on an assumption that *the input* series of an instance follows the same distribution.

In the real-world scenarios, time series points rapidly change over time. For any given time slices of instance $k, x_i^k, x_j^k, p(x_i^k) \neq p(x_j^k)$.

Previous works either *ignore* the restoration of non-stationary information or simply *adopt the statistical properties of input series to denormalize the output results*.

Lead to a prediction shift of the final forecasting results due to a bad estimation 0.5 of future statistics.

Our thoughts

- Split series into non-overlap equally-sized slices and model the localregion non-stationarity under them.
- Employ a statistics prediction module learning to estimate the distribution of future slices precisely.

Figure 2: A forecasting instance with non-stationarity.

Methodology

5

Sliced normalization

□ Removing the local non-stationarity for each time slice according to their statistics.

$$\mu_{j}^{i} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{j,t}^{i}, (\sigma_{j}^{i})^{2} = \frac{1}{T} \sum_{t=1}^{T} (\boldsymbol{x}_{j,t}^{i} - \mu_{j}^{i})^{2}, \qquad \bar{\boldsymbol{x}}_{j}^{i} = \frac{1}{\sigma_{j}^{i} + \epsilon} \cdot (\boldsymbol{x}_{j}^{i} - \mu_{j}^{i}).$$

Statistics prediction

□ Under our assumption, a natural challenge is that how to **estimate the evolving distributions** for each future slice.

□ We adopt a two-layer perceptron network responsible for this task for simplicity and efficiency.

$$\hat{\boldsymbol{\mu}}^{i} = \boldsymbol{W}_{1} * MLP(\boldsymbol{\mu}^{i} - \boldsymbol{\rho}^{i}, \bar{\boldsymbol{x}}^{i} - \boldsymbol{\rho}^{i}) + \boldsymbol{W}_{2} * \boldsymbol{\rho}^{i}, \qquad : \text{residual learning} \\ \hat{\boldsymbol{\sigma}}^{i} = MLP(\boldsymbol{\sigma}^{i}, \bar{\boldsymbol{x}}^{i}). \qquad : \text{individual preference}$$

- The overall mean of the input sequence is a *maximum likelihood estimation* of the target sequence's mean → residual learning.
- Different variables may exhibit distinct patterns in scale changes \rightarrow individual preference.

Methodology

6

NEURAL INFORMATION PROCESSING SYSTEMS

Sliced de-normalization

□ The non-stationarity information is vital for forecasting.

□ Restore them into predicted results in a slice perspective.

 $\hat{\boldsymbol{y}}_{j}^{i} = \bar{\boldsymbol{y}}_{j}^{i} * (\hat{\boldsymbol{\sigma}}_{j}^{i} + \epsilon) + \hat{\boldsymbol{\mu}}_{j}^{i}.$

□ Slicing Adaptive Normalization (SAN)

Figure 3: Illustration of the proposed SAN framework.

Methodology

7

Two-stage training schema

□ It forms to a bi-level optimization problem when joint training SAN and backbone model, as the target is to ensure the similarity between distributions of **denormalized output and ground truth**.

$$arg \min_{\theta} \sum_{(\boldsymbol{x}^{i}, \boldsymbol{y}^{i})} l_{fc}(\theta, \phi^{*}, (\boldsymbol{x}^{i}, \boldsymbol{y}^{i})),$$

$$s.t.\phi^{*} = arg \min_{\phi} \sum_{(\boldsymbol{x}^{i}, \boldsymbol{y}^{i})} l_{sp}(\theta, \phi, (\boldsymbol{x}^{i}, \boldsymbol{y}^{i}))$$

- □ Relax the optimization objective of statistic prediction module to **estimating the future distribution**.
 - The original non-stationary forecasting task is divided into **decoupled** statistic prediction task and stationary forecasting task.
- **Qualities:**
 - **Simplifies** the task of non-stationary forecasting through **divide-and-conquer**.
 - Estimate **more accurately** on future distributions.

□ Setup

8

□ The widely used benchmark with 9 datasets:

Dataset	Variables	Sampling Frequency	Length	Slicing Length	ADF*
Electricity	321	1 Hour	26,304	24	-8.44
Exchange	8	1 Day	7,588	6	-1.90
Traffic	862	1 Hour	17,544	24	-15.02
Weather	21	10 Minutes	52,696	12	-26.68
ILI	7	1 Week	966	6	-5.33
ETTh1&ETTh2	7	1 Hour	17,420	24	-5.91&-4.13
ETTm1&ETTm2	7	15 Minutes	69,680	12	-14.98&-5.66

*A smaller ADF test result indicates a more stationary time series data

□ Baseline models:

RevIN (ICLR'22), NST(NIPS'22), Dish-TS(AAAI'23)

□ Backbone models:

- Autoformer(NIPS'21),FEDformer(ICML'22),SCINet(NIPS'22),DLinear(AAAI'23)
- Slice-based models: PatchTST(ICLR'23),Crossformer(ICLR'23)

□ Results

□ Overall forecasting performance on SAN-enhanced backbone models.

M	ethods	Dli	inear	+ 5	SAN	FEDf	ormer	+ S	AN	Autof	ormer	+ S	AN	SCINet	+ SA	N	Method	s	Pate	hTST	+ S	AN	Crossf	ormer	+ S	AN
N	letric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE MAE	MSE 1	MAE	Metric		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	96 192 336 720	0.140 0.153 0.168 0.203	0.237 0.250 0.267 0.301	0.137 0.151 0.166 0.201	0.234 0.247 0.264 0.295	0.185 0.196 0.215 0.244	0.300 0.310 0.330 0.352	0.164 0.179 0.191 0.230	0.272 0.286 0.299 0.334	0.195 0.215 0.237 0.292	0.309 0.325 0.344 0.375	0.172 0.195 0.211 0.236	0.281 0.300 0.316 0.335	0.213 0.316 0.224 0.329 0.230 0.334 0.260 0.356	0.152 (0.163 (0.178 (0.206 (0.082 (0.256 0.266 0.283 0.307	Electricity	96 192 336 720	0.138 0.153 0.170 0.206	0.233 0.247 0.263 0.296	0.136 0.150 0.165 0.200	0.234 0.247 0.264 0.296	0.150 0.175 0.218 0.226	0.258 0.284 0.325 0.324	0.143 0.162 0.177 0.221	0.246 0.265 0.280 0.318
Exchange	192 336 720	0.000 0.161 0.338 0.999	0.213 0.297 0.437 0.755 0.283	0.177 0.294 0.726	0.214 0.317 0.407 0.649	0.132 0.273 0.452 1.151	0.281 0.380 0.498 0.830	0.156 0.260 0.697 0.536	0.205 0.295 0.384 0.633	0.132 0.369 0.534 1.222	0.203 0.437 0.544 0.848	0.157 0.262 0.689	0.200 0.296 0.385 0.629	$\begin{array}{c} 0.126 & 0.269 \\ 0.266 & 0.392 \\ 0.574 & 0.541 \\ 1.136 & 0.818 \\ 0.626 & 0.393 \end{array}$	0.002 0.169 0.320 0.892 0.542	0.200 0.293 0.409 0.712	Exchange	96 192 336	0.094 0.191 0.343	0.216 0.311 0.427	0.087 0.181 0.305	0.218 0.323 0.418	0.283	0.393 0.804 0.905	0.087 0.171 0.286	0.219 0.313 0.401
Traffic	192 336 720	0.423 0.437 0.467	0.289 0.297 0.316	0.429 0.445 0.474	0.297 0.306 0.319	0.608 0.620 0.630	0.376 0.385 0.387	0.565 0.580 0.607	0.345 0.354 0.367	0.654 0.629 0.657	0.410 0.391 0.402	0.594 0.591 0.623	0.364 0.363 0.380	0.613 0.396 0.625 0.398 0.639 0.409	0.545 (0.563 (0.607 (0.358 0.369 0.381	Waathar	96 192	0.888	0.706 0.197 0.240	0.659 0.150 0.194	0.620 0.205 0.252	0.148 0.201	0.987	0.749 0.151 0.198	0.653 0.210 0.253
Veather	96 192 336	0.175 0.217 0.263	0.237 0.275 0.314	0.152 0.196 0.246	0.210 0.254 0.294	0.246 0.281 0.337	0.328 0.341 0.376	0.179 0.234 0.304	0.239 0.296 0.348	0.247 0.302 0.362	0.320 0.361 0.394	0.194 0.258 0.329	0.256 0.316 0.367	0.181 0.260 0.239 0.311 0.293 0.348	0.169 (0.215 (0.267 (0.232 0.275 0.314	weather	336 720	0.244 0.320	0.282 0.334	0.243 0.311	0.290 0.343	0.248	0.311 0.395	0.248 0.322	0.294 0.350
ILI V	24 36 48 60	$ 0.325 \\ 2.297 \\ 2.323 \\ 2.262 \\ 2.443 \\ 2.443 \\ 0.325 \\ $	0.366 1.055 1.070 1.065 1.124	0.315 2.122 2.029 2.041 2.089	0.346 1.001 0.978 0.971 0.973	0.414 3.205 3.148 2.913 2.853	0.426 1.255 1.288 1.168 1.161	0.400 2.614 2.537 2.416 2.299	0.404 1.119 1.079 1.032 1.003	0.427 3.309 3.207 3.166 2.947	0.433 1.270 1.216 1.198 1.159	0.440 2.777 2.649 2.420 2.401	0.438 1.157 1.104 1.029 1.021	0.345 0.380 7.467 2.039 7.035 1.948 7.225 1.955 7.335 1.957	0.338 2.776 1 2.411 1 2.295 1 2.487 1	0.365 1.163 1.026 1.004 1.063	ETTh1	96 192 336 720	$ \begin{array}{c c} 0.382 \\ 0.416 \\ 0.441 \\ 0.470 \\ \end{array} $	$\begin{array}{c} 0.403 \\ 0.423 \\ 0.440 \\ 0.475 \end{array}$	0.375 0.413 0.428 0.445	0.398 0.422 0.434 0.461	0.390 0.424 0.486 0.507	0.417 0.448 0.492 0.519	0.387 0.413 0.436 0.467	0.402 0.425 0.431 0.474
ETTh2	96 96 192 336 720	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.356 0.418 0.477 0.599	0.277 0.340 0.356 0.396	0.338 0.378 0.398 0.435	0.341 0.426 0.481 0.458	0.382 0.436 0.479 0.477	0.300 0.392 0.459 0.462	0.355 0.413 0.462 0.472	0.384 0.457 0.468 0.473	0.420 0.454 0.473 0.485	0.316 0.413 0.446 0.471	0.366 0.426 0.457 0.474	0.690 0.625 0.991 0.742 1.028 0.759 1.363 0.885	0.294 (0 0.374 (0 0.412 (0 0.437 (0	0.347 0.398 0.430 0.461	ETTm2	96 192 336 720	0.174 0.238 0.293 0.373	0.261 0.307 0.346 0.401	0.167 0.222 0.276 0.366	0.260 0.298 0.334 0.393	0.330 0.623 0.887 0.844	0.401 0.543 0.637 0.640	0.170 0.224 0.274 0.366	0.262 0.301 0.333 0.390

INFORMATION

SSING SYS

□ Results

10

□ Comparison between SAN and existing normalization approaches.

			FEDfor	mer		Autoformer							
Methods	+SAN	+RevIN	+NST	+Dish-TS	IMP(%)	+SAN	+RevIN	+NST	+Dish-TS	IMP(%)			
Electricity	0.191	0.200	0.198	0.203	3.54	0.204	0.219	0.213	0.231	4.23			
Exchange	0.298	0.474	0.480	0.704	37.13	0.297	0.495	0.494	1.008	39.88			
Traffic	0.572	0.647	0.649	0.652	11.59	0.594	0.666	0.664	0.677	10.54			
Weather	0.279	0.268	0.267	0.398	-4.49	0.305	0.290	0.290	0.433	-5.17			
ILI	2.467	2.962	3.084	2.846	13.32	2.562	3.151	3.235	3.180	18.69			
ETTh1	0.447	0.463	0.456	0.461	1.97	0.518	0.519	0.521	0.521	0.19			
ETTh2	0.404	0.465	0.481	1.004	13.12	0.411	0.489	0.465	1.175	11.61			
ETTm1	0.377	0.415	0.411	0.422	8.27	0.406	0.562	0.535	0.567	24.11			
ETTm2	0.287	0.310	0.315	0.759	7.42	0.311	0.325	0.331	0.894	4.31			

Results

11

Figure 4: Visualization of forecasting results comparing SAN and baseline models.

Conclusion

12

- NEURAL INFORMATION PROCESSING SYSTEMS
- We focused on alleviating the non-stationary property of time series data using a novel slice view in the forecasting task.
- □ We proposed Slicing Adaptive Normalization (SAN)
 - □ A **model-agnostic** approach that removes the non-stationary factors the input by normalization and restores them to the output through denormalization **on a per-slice basis**.
 - □ With a two-stage training schema for the statistics prediction module, SAN **simplifies the non-stationary forecasting task through divide and conquer**.
 - Compared to existing normalization methods, SAN could better alleviate the local-region nonstationarity and provides more accurate estimation on future distributions.
- □ Extensive experiments validated the effectiveness of our method.

Thanks

https://github.com/icantnamemyself/SAN zhiding@mail.ustc.edu.cn