Diffusion Model for Graph Inverse Problems: Towards Effective Source Localization on Complex Networks

VORTHE

1

Xin Yan, Hui Fang, Qiang He

Task Description

How to infer the infection graph at each moment from the observation

graph at time t=T?

DDMSL

Figl. The process of information dissemination on a graph.

Modeling the spread process of diseases using Markov chains. Assuming that the result at time t=T+1, caused by the diffusion of the source node at time t=1, follows the distribution P, the problem is defined as solving the distribution P^{-1} .

Reversible residual network

$$\begin{aligned} P_{\Omega}^{i}(t+1) &= h(P_{\Omega}^{i}(t)) + \sigma \left(\sum_{j \in N(i)} h(P_{\Omega}^{j}(t)) \right) & \text{SIR Node status} \\ \text{update process} \\ \begin{cases} m_{\Omega}^{i}(t+1) &= \sum_{j \in N(i)} M_{t} \left(h(P_{\Omega}^{i}(t)), h(P_{\Omega}^{j}(t)), e_{ij} \right) & \text{Structurally} \\ equivalent \\ P_{\Omega}^{i}(t+1) &= U_{t} \left(h(P_{\Omega}^{i}(t)), m_{\Omega}^{i}(t+1) \right) \\ h(P_{\Omega}^{i}(t)) &= \sigma \left(\mathbf{W}_{\Omega} P_{\Omega}^{i}(t) + \mathbf{b}_{\Omega} \right) & \text{Message} \\ \text{Passing Process} \\ \end{cases} \\ \\ \begin{cases} \mathbf{h}_{i,t}^{(0)} = \mathbf{SN}(\mathbf{U}x_{i}^{t}) \text{ with } \mathbf{U} \in \mathbb{R}^{C \times M} \\ g(\mathbf{h}) = \sigma_{g}(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2} \cdot \mathbf{h} \cdot \mathbf{w} + \mathbf{b}) \\ \mathbf{h}_{i,t}^{(1+1)} &= \mathbf{h}_{i,t}^{(1)} + \sigma \left(\mathbf{SN} \left(\mathbf{BN} \left(g \left(\mathbf{h}_{i,t}^{(1)} \right) \right) \right) \right) \end{aligned}$$

Diffusion Model

Forward Process

Write the following state transition matrix for each node:

$$Q_t^i = \begin{bmatrix} 1 - \beta_I^i(t) & \beta_I^i(t) & 0\\ 0 & 1 - \gamma_R^i(t) & \gamma_R^i(t)\\ 0 & 0 & 1 \end{bmatrix}$$

The forward diffusion process is as follows:

$$q\left(\boldsymbol{x}_{t}^{i} \mid \boldsymbol{x}_{t-1}^{i}\right) = \boldsymbol{x}_{t-1}^{i} Q_{t}^{i} \boldsymbol{x}_{t}^{i^{T}} \sim \operatorname{Cat}\left(\boldsymbol{x}_{t}^{i}; \boldsymbol{p} = \boldsymbol{x}_{t-1}^{i} Q_{t}^{i}\right)$$
$$q\left(\boldsymbol{x}_{t}^{i} \mid \boldsymbol{x}_{0}^{i}\right) = \sum_{\boldsymbol{x}_{1:t-1}^{i}} \prod_{k=1}^{t} q\left(\boldsymbol{x}_{k}^{i} \mid \boldsymbol{x}_{k-1}^{i}\right) = \boldsymbol{x}_{0}^{i} \bar{Q}_{t}^{i} \boldsymbol{x}_{t}^{i^{T}} \sim \operatorname{Cat}\left(\boldsymbol{x}_{t}^{i}; \boldsymbol{p} = \boldsymbol{x}_{0}^{i} \bar{Q}_{t}^{i}\right)$$

Diffusion Model

Reverse process

The following equation can be obtained from the Bayesian formula:

$$q\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}, \boldsymbol{x}_{0}^{i}\right) \sim \operatorname{Cat}\left(\boldsymbol{x}_{t-1}^{i}; \boldsymbol{p} = \frac{\left(\boldsymbol{x}_{t}^{i} Q_{t}^{i^{T}}\right) \odot \left(\boldsymbol{x}_{0}^{i} \bar{Q}_{t-1}^{i}\right)}{\boldsymbol{x}_{0}^{i} \bar{Q}_{t}^{i} \boldsymbol{x}_{t}^{i^{T}}}\right)$$

$$q\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}, \boldsymbol{x}_{0}^{i}\right) = q\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}\right) = \frac{\sum_{\boldsymbol{x}_{0}^{i}} q\left(\boldsymbol{x}_{t-1}^{i}, \boldsymbol{x}_{t}^{i}, \boldsymbol{x}_{0}^{i}\right)}{q\left(\boldsymbol{x}_{t}^{i}\right)} = \mathbb{E}_{q\left(\boldsymbol{x}_{0}^{i} \mid \boldsymbol{x}_{t}^{i}\right)} q\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}, \boldsymbol{x}_{0}^{i}\right)$$

Obviously \mathbf{x}_{0}^{i} and $q(\mathbf{x}_{0}^{i} | \mathbf{x}_{t}^{i})$ are unknown, we use the reversible residual graph convolutional network mentioned above to infer the distribution: $q(\mathbf{x}_{t-1}^{i} | \mathbf{x}_{t}^{i}) \approx p_{\theta}(\mathbf{x}_{t-1}^{i} | \mathbf{x}_{t}^{i}) = \mathbb{E}_{\mathbf{x}_{0}^{i} \sim p_{\theta}(\mathbf{x}_{0}^{i} | \mathbf{x}_{t}^{i})} q(\mathbf{x}_{t-1}^{i} | \mathbf{x}_{t}^{i}, \mathbf{x}_{0}^{i})$ $= \frac{q(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i}) \left[\sum_{j} q(\mathbf{x}_{t-1}^{i} | \mathbf{x}_{0}^{j}) p_{\theta}(\mathbf{x}_{0}^{i} | \mathbf{x}_{t}^{i})\right]}{q(\mathbf{x}_{t}^{i} | \mathbf{x}_{0}^{i})}$

Loss Function

1.Variational lower bound loss function

$$\begin{split} L_{\mathrm{vb}}^{i} &= \mathbb{E}_{q\left(\boldsymbol{x}_{0}^{i}\right)} [\underbrace{D_{\mathrm{KL}}\left[q\left(\boldsymbol{x}_{T}^{i} \mid \boldsymbol{x}_{0}^{i}\right) \| p\left(\boldsymbol{x}_{T}^{i}\right)\right]}_{L_{T}} + \\ \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q\left(\boldsymbol{x}_{t}^{i} \mid \boldsymbol{x}_{0}^{i}\right)} [\mathrm{KL}\left[q\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}, \boldsymbol{x}_{0}^{i}\right) \| p_{\theta}\left(\boldsymbol{x}_{t-1}^{i} \mid \boldsymbol{x}_{t}^{i}\right)\right]}_{L_{t-1}} - \underbrace{\mathbb{E}_{q\left(\boldsymbol{x}_{1}^{i} \mid \boldsymbol{x}_{0}^{i}\right)} \left[\log p_{\theta}\left(\boldsymbol{x}_{0}^{i} \mid \boldsymbol{x}_{1}^{i}\right)\right]}_{L_{0}}]}_{L_{0}} \end{split}$$

2.Constrained reconstruction propagation loss function

To ensure that the reconstructed diffusion path conforms to the SIR propagation rules, for nodes with a state of I at the previous time, the state at the next time can only be I or R.

$$\begin{aligned} L_{constrain1} &= Relu \left(\mathbf{X_{t-1}} - (\mathbf{A} + \mathbf{I}) \mathbf{X_0} \right) \\ L_{constrain2} &= \left\| \max \left(\mathbf{0}, \mathbf{X_{t-1}^{(j)}} - \mathbf{X_{t-1}^{(i)}} \right) \right\|_2^2, \forall \mathbf{X_0^{(i)}} \supseteq \mathbf{X_0^{(j)}} \end{aligned}$$

Datasets

Datasets	#Nodes	#Edges	#Avg(degree)	#Average clustering coefficient	#Density	#Diameter
Karate	34	78	2.29	0.57	0.14	5
Jazz	198	2,742	27.70	0.62	0.14	6
Cora_ml	2,810	7,981	5.68	0.28	0.002	17
Power Grid	4,941	6,594	1.33	0.08	0.005	46
PGP	10,680	24,316	4.55	0.27	0.0004	24

We conducted simulation synthesis datasets of SIR diffusion pattern on 5 real networks for training and testing. In addition, two real datasets, Douban and Twitter, were used for testing.

Experimental Result

Our method (DDMSL) performs the best in traceability, with F1 averaging about 25% ahead of the baseline method.

		rate	Jazz				Cora MI					Power	Grid	-3	PGP					
Methods	PR	RE	F1	AUC																
DDMSL	0.708	0.736	0.722	0.853	0.817	0.881	0.848	0.930	0.894	0.867	0.880	0.928	0.833	0.879	0.855	0.930	0.856	0.903	0.879	0.943
GCNSI	0.275	0.410	0.329	0.671	0.301	0.363	0.330	0.641	0.247	0.273	0.260	0.591	0.165	0.182	0.173	0.540	0.554	0.543	0.549	0.748
LPSI	0.211	0.393	0.274	0.646	0.400	0.098	0.158	0.543	0.246	0.026	0.048	0.509	0.193	0.012	0.022	0.503	0.518	0.437	0.474	0.696
SLVAE	0.552	0.400	0.464	0.696	0.750	0.576	0.651	0.778	0.815	0.721	0.765	0.852	0.908	0.719	0.803	0.856	0.817	0.721	0.766	0.851
OJC	0.178	0.265	0.213	0.594	0.147	0.161	0.154	0.535	0.114	0.114	0.114	0.508	0.109	0.109	0.109	0.505	0.128	0.128	0.128	0.516
DDMIX	0.289	0.234	0.258	0.308	0.215	0.197	0.205	0.238	0.162	0.273	0.204	0.250	0.333	0.253	0.287	0.346	0.172	0.194	0.182	0.213
Improve.	28.3%	84.3%	55.7%	22.5%	8.9%	52.9%	30.1%	19.6%	9.7%	20.2%	15.0%	8.9%	-8.3%	22.2%	6.6%	8.7%	4.8%	25.3%	14.8%	10.8%
Significance	***	***	***	***	**	***	**	*	***	*	**	*	***	***	***	***	***	***	***	***

Table1.Performance of DDMSL in SIR diffusion mode.

	Karate				Jazz				Cora Ml					Power	Grid		PGP			
Methods	PR	RE	F1	AUC	PR	RE	F1	AUC	PR	RE	F1	AUC	PR	RE	F1	AUC	PR	RE	F1	AUC
DDMSL	0.706	0.980	0.798	0.972	0.782	0.853	0.813	0.914	0.790	0.908	0.845	0.941	0.763	0.966	0.852	0.966	0.754	0.887	0.815	0.928
GCNSI	0.357	0.456	0.401	0.687	0.366	0.426	0.394	0.676	0.321	0.354	0.337	0.636	0.335	0.325	0.330	0.639	0.487	0.370	0.421	0.665
LPSI	0.339	0.414	0.351	0.681	0.474	0.097	0.156	0.544	0.494	0.207	0.291	0.592	0.343	0.277	0.306	0.609	0.453	0.284	0.349	0.623
SLVAE	0.591	0.477	0.503	0.733	0.888	0.579	0.691	0.785	0.841	0.728	0.780	0.856	0.815	0.780	0.797	0.880	0.844	0.633	0.723	0.810
OJC	0.267	0.396	0.318	0.663	0.120	0.127	0.123	0.517	0.125	0.125	0.125	0.514	0.178	0.178	0.178	0.544	0.118	0.118	0.118	0.510
DDMIX	0.253	0.377	0.303	0.654	0.244	0.133	0.172	0.212	0.220	0.222	0.221	0.247	0.345	0.235	0.280	0.340	0.189	0.186	0.187	0.207
NetSleuth	0.239	0.339	0.279	0.634	0.216	0.252	0.233	0.580	0.217	0.229	0.223	0.569	0.206	0.216	0.211	0.562	0.200	0.210	0.205	0.558
Improve.	19.4%	105.5%	58.5%	32.5%	-11.9%	47.3%	17.6%	16.3%	-6.0%	24.8%	8.3%	9.9%	-6.3%	23.8%	7.0%	9.8%	-10.6%	40.2%	12.7%	14.5%
Significance	***	***	***	***	***	***	***	***	***	***	***	***	*	*	**	**	***	***	***	***

Table2.Performance of DDMSL in SI diffusion mode.

Visualization1

Thank you

医学与生物信息工程学院