PAC Learning Linear Thresholds from Label Proportions

Anand Brahmbhatt, Rishi Saket and Aravindan Raghuveer Google Research India

PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. Pr_{x~D}[h(x)≠f(x)] ≤ ε w.p. 1 - δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).

- PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. $\Pr_{x\sim D}[h(x) \neq f(x)] \leq \varepsilon$ w.p. 1 δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).
- ★ Learning from Label Proportions (LLP): Samples are "bags" of the form $(\{x_1, ..., x_q\}, k)$ where $\sum_{i} f(x_i) = k$. Our study: $f \leftarrow$ Linear Threshold function (LTF) [1{r^Tx + c > 0}]

- PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. $\Pr_{x\sim D}[h(x) \neq f(x)] \leq \varepsilon$ w.p. 1 δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).
- Learning from Label Proportions (LLP): Samples are "bags" of the form ({x₁, ..., x_q}, k) where Σ_if(x_i) = k. Our study: f ← Linear Threshold function (LTF) [1{r^Tx + c > 0}]
 LTFs are efficiently PAC learnable to arbitrary accuracy

- PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. $\Pr_{x\sim D}[h(x) \neq f(x)] \leq \varepsilon$ w.p. 1 δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).
- Learning from Label Proportions (LLP): Samples are "bags" of the form ({x₁, ..., x_q}, k) where Σ_if(x_i) = k. Our study: f ← Linear Threshold function (LTF) [1{r^Tx + c > 0}]
 LTFs are efficiently PAC learnable to arbitrary accuracy
- ★ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃ LTF consistent with all bags, NP-hard to find <u>any</u> LTF consistent with ≥ (1/q + o(1))-fraction of the bags.

- PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. $\Pr_{x\sim D}[h(x) \neq f(x)] \leq \varepsilon$ w.p. 1 δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).
- Learning from Label Proportions (LLP): Samples are "bags" of the form ({x₁, ..., x_q}, k) where Σ_if(x_i) = k. Our study: f ← Linear Threshold function (LTF) [1{r^Tx + c > 0}]
 LTFs are efficiently PAC learnable to arbitrary accuracy
- ★ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃ LTF consistent with all bags, NP-hard to find <u>any</u> LTF consistent with ≥ (1/q + o(1))-fraction of the bags.

Question: What happens for natural/well-behaved distributions?

- PAC Learning: For a function f: ℝ^d→{0, 1}, given m samples (x, f(x)) where x ~ D, find a hypothesis h s.t. $\Pr_{x\sim D}[h(x) \neq f(x)] \leq \varepsilon$ w.p. 1 δ. Efficient if m ≤ O(poly(d,1/ε, log(1/δ))).
- Learning from Label Proportions (LLP): Samples are "bags" of the form ({x₁, ..., x_q}, k) where Σ_if(x_i) = k. Our study: f ← Linear Threshold function (LTF) [1{r^Tx + c > 0}]
 LTFs are efficiently PAC learnable to arbitrary accuracy
- ★ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃ LTF consistent with all bags, NP-hard to find <u>any</u> LTF consistent with ≥ (1/q + o(1))-fraction of the bags.

Question: What happens for natural/well-behaved distributions?

- Bag Oracle for LTF f, **D** = N(μ , **Σ**) and fixed **q**, **k** :- Ex(f, **D**, **q**, **k**)
 - > Samples bag with **k** feature-vecs. from $\mathcal{D}|\mathbf{f}(\mathbf{x})=1$ and $\mathbf{q}-\mathbf{k}$ from $\mathcal{D}|\mathbf{f}(\mathbf{x})=0$.

Our Results

Homogeneous LTF	Homogeneous LTF	Non-Homogeneous LTF
Standard Gaussian	Centered Gaussian	General Gaussian
k eq q/2	$orall k \in \{1,\ldots,q-1\}$	$\forallk\in\{1,\ldots,q-1\}$
$\mathcal{D}:=N(0,\mathbf{I})$	$\mathcal{D} := N(0, \mathbf{\Sigma})$	$\mathcal{D} := N(\mu, \mathbf{\Sigma})$
$f(\mathbf{x}) := 1\{\mathbf{r}_*^{\intercal}\mathbf{x} > 0\}$	$f(\mathbf{x}) := 1\{\mathbf{r}_*^{T}\mathbf{x} > 0\}$	$f(\mathbf{x}):=1\{\mathbf{r}_*^{\intercal}\mathbf{x}+c_*>0\}$
$\hat{f}\left(\mathbf{x} ight):=1\{\hat{\mathbf{r}}^{T}\mathbf{x}>0\}$	$\hat{f}\left(\mathbf{x} ight):=1\{\hat{\mathbf{r}}^{T}\mathbf{x}>0\}$	$\hat{f}\left(\mathbf{x} ight):=1\{\hat{\mathbf{r}}^{T}\mathbf{x}+\hat{c}>0\}$
$O\left(rac{d}{arepsilon^2} \mathrm{log}\!\left(rac{d}{\delta} ight) ight)$	$O\left(rac{d}{arepsilon^4} { m log}{\left(rac{d}{\delta} ight)}{\left(rac{\lambda_{ m max}}{\lambda_{ m min}} ight)}^6 q^8 ight)$	$O\left(rac{d}{arepsilon^4} \log\!\left(rac{d}{\delta} ight) rac{O(\ell^2)}{\Phi(\ell)(1-\Phi(\ell))} \!\left(rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}} ight)^4 \!\left(rac{\sqrt{\lambda_{ ext{max}}}\!+\!\ \mu\ _2}{\sqrt{\lambda_{ ext{min}}}} ight)^4 q^8 ight)$

 $d \leftarrow ext{dimension of the feature-vectors}, \quad \ell := -(c_* + \mathbf{r}_*^{\mathsf{T}} \mu) / \| \mathbf{\Sigma}^{1/2} \mathbf{r}_* \|_2$ $\lambda_{\max} \leftarrow ext{maximum eigenvalue of } \mathbf{\Sigma}, \quad \lambda_{\min} \leftarrow ext{minimum eigenvalue of } \mathbf{\Sigma}$

Normal Estimation

- **Observation**: Sampling a pair of * feature vectors from a bag
 - \succ (**x**₁, **x**₂) independently u.a.r: $\Pr[f(\mathbf{x}_1) \neq f(\mathbf{x}_1)] = 2k(q-k)/q^2$
 - > (z_1, z_2) pair u.a.r w/o replacement: $\Pr[f(\mathbf{z}_1) \neq f(\mathbf{z}_2)] = 2k(q-k)/q(q-1)$

Theorem: $\rho(\mathbf{r}) := \mathsf{Var} \left[\mathbf{r}^\mathsf{T} (\mathbf{z}_1 - \mathbf{z}_2) \right] / \mathsf{Var} \left[\mathbf{r}^\mathsf{T} (\mathbf{x}_1 - \mathbf{x}_2) \right]$ is maximized when $\mathbf{r} = \pm \mathbf{r}_*$. **Proof Sketch:** Case $\mathcal{D} = N(\mathbf{0}, \mathbf{I})$ and k = q/2. For any $\mathbf{r} \in \mathbb{S}^{d-1}$ $ho(\mathbf{r}) = egin{cases} 1 & ext{if } \mathbf{r}^{\mathsf{T}} \mathbf{r}_* = 0, \text{ i.e. } \mathbf{r} ext{ lies on the LTF}, \ 1 + rac{1}{q-1} \left(rac{2}{\pi}\right) & ext{if } \mathbf{r} = \pm \mathbf{r}_*, ext{ i.e. } \mathbf{r} ext{ is aligned} \ ext{ with the normal to the LTF}, \ 1 + rac{1}{q-1} \left(rac{2}{\pi}\right) \cos^2 heta & ext{if } \mathbf{r}^{\mathsf{T}} \mathbf{r}_* = \cos heta, ext{ i.e. the angle} \ ext{.}$

between \mathbf{r} and \mathbf{r}_* is θ .

Homogeneous LTF with $N(O, \Sigma)$

- Let $\Sigma_{B} = E[(x_{1}-x_{2})(x_{1}-x_{2})^{T}]$ and $\Sigma_{D} = E[(z_{1}-z_{2})(z_{1}-z_{2})^{T}]$
- Objective: $\operatorname{argmax}_{||r||=1} r^T \Sigma_B r/r^T \Sigma_D r = \Sigma_B^{-\frac{1}{2}} \operatorname{PrincipalEigenVector}(\Sigma_B^{-\frac{1}{2}} \Sigma_D \Sigma_B^{-\frac{1}{2}})$

Homogeneous LTF with $N(O, \Sigma)$

- Let $\Sigma_{B} = E[(x_{1}-x_{2})(x_{1}-x_{2})^{T}]$ and $\Sigma_{D} = E[(z_{1}-z_{2})(z_{1}-z_{2})^{T}]$
- Objective: $\operatorname{argmax}_{||r||=1} r^{\mathsf{T}} \Sigma_{\mathsf{B}} r / r^{\mathsf{T}} \Sigma_{\mathsf{D}} r = \Sigma_{\mathsf{B}}^{-\frac{1}{2}} \operatorname{PrincipalEigenVector}(\Sigma_{\mathsf{B}}^{-\frac{1}{2}} \Sigma_{\mathsf{D}} \Sigma_{\mathsf{B}}^{-\frac{1}{2}})$
- **Stability Theorem**: The ratio maximization computed with high probability approximations of Σ_B and Σ_D is close to the normal with high probability.

Homogeneous LTF with N(O, Σ)

- Let $\Sigma_{B} = E[(x_{1}-x_{2})(x_{1}-x_{2})^{T}]$ and $\Sigma_{D} = E[(z_{1}-z_{2})(z_{1}-z_{2})^{T}]$
- Objective: $\operatorname{argmax}_{||r||=1} r^T \Sigma_B r/r^T \Sigma_D r = \Sigma_B^{-\frac{1}{2}} \operatorname{PrincipalEigenVector}(\Sigma_B^{-\frac{1}{2}} \Sigma_D \Sigma_B^{-\frac{1}{2}})$
- **Stability Theorem**: The ratio maximization computed with high probability approximations of Σ_B and Σ_D is close to the normal with high probability.
- Geometric bound \rightarrow Bound on sample error
 - > An algorithm to find a high probability estimator of c_* given a high probability estimator of r_*

Homogeneous LTF with N(O, Σ)

- Let $\Sigma_{B} = E[(x_{1}-x_{2})(x_{1}-x_{2})^{T}]$ and $\Sigma_{D} = E[(z_{1}-z_{2})(z_{1}-z_{2})^{T}]$
- Objective: $\operatorname{argmax}_{||r||=1} r^T \Sigma_B r / r^T \Sigma_D r = \Sigma_B^{-\frac{1}{2}} \operatorname{PrincipalEigenVector}(\Sigma_B^{-\frac{1}{2}} \Sigma_D \Sigma_B^{-\frac{1}{2}})$
- **Stability Theorem**: The ratio maximization computed with high probability approximations of Σ_{B} and Σ_{D} is close to the normal with high probability.
- ♦ Geometric bound → Bound on sample error
 - > An algorithm to find a high probability estimator of c_* given a high probability estimator of r_*
- \clubsuit Bound on sample error \rightarrow Bound on Generalization error
 - Generalization Error Bound

Homogeneous LTF with N(O, Σ)

- Let $\Sigma_{B} = E[(x_{1}-x_{2})(x_{1}-x_{2})^{T}]$ and $\Sigma_{D} = E[(z_{1}-z_{2})(z_{1}-z_{2})^{T}]$
- Objective: $\operatorname{argmax}_{||r||=1} r^T \Sigma_B r / r^T \Sigma_D r = \Sigma_B^{-\frac{1}{2}} \operatorname{PrincipalEigenVector}(\Sigma_B^{-\frac{1}{2}} \Sigma_D \Sigma_B^{-\frac{1}{2}})$
- **Stability Theorem**: The ratio maximization computed with high probability approximations of Σ_{B} and Σ_{D} is close to the normal with high probability.
- ♦ Geometric bound → Bound on sample error
 - > An algorithm to find a high probability estimator of c_* given a high probability estimator of r_*
- \clubsuit Bound on sample error \rightarrow Bound on Generalization error

Generalization Error Bound

Sub-gaussian concentration bounds for thresholded Gaussians.

Thank You