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Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).



Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).

❖ Learning from Label Proportions (LLP): Samples are “bags” of the form ({x1, …, xq}, k) 
where 𝚺i𝒇(xi) = k.  Our study: 𝒇 ← Linear Threshold function (LTF) [ 𝟙{rTx + c > 0} ]



Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).

❖ Learning from Label Proportions (LLP): Samples are “bags” of the form ({x1, …, xq}, k) 
where 𝚺i𝒇(xi) = k.  Our study: 𝒇 ← Linear Threshold function (LTF) [ 𝟙{rTx + c > 0} ]
➢ LTFs are efficiently PAC learnable to arbitrary accuracy 



Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).

❖ Learning from Label Proportions (LLP): Samples are “bags” of the form ({x1, …, xq}, k) 
where 𝚺i𝒇(xi) = k.  Our study: 𝒇 ← Linear Threshold function (LTF) [ 𝟙{rTx + c > 0} ]
➢ LTFs are efficiently PAC learnable to arbitrary accuracy 

❖ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃  LTF consistent with 
all bags, NP-hard to find any LTF consistent with  ≥ (1/q + o(1))-fraction of the bags.



Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).

❖ Learning from Label Proportions (LLP): Samples are “bags” of the form ({x1, …, xq}, k) 
where 𝚺i𝒇(xi) = k.  Our study: 𝒇 ← Linear Threshold function (LTF) [ 𝟙{rTx + c > 0} ]
➢ LTFs are efficiently PAC learnable to arbitrary accuracy 

❖ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃  LTF consistent with 
all bags, NP-hard to find any LTF consistent with  ≥ (1/q + o(1))-fraction of the bags.

Question: What happens for natural/well-behaved distributions?



Problem Statement
❖ PAC Learning: For a function 𝒇: ℝd→{0, 1}, given m samples (x, 𝒇(x)) where x ~ Ɗ, find a 

hypothesis 𝒉 s.t. Prx~Ɗ[𝒉(x)≠𝒇(x)] ≤ ε w.p. 1 - 𝛅. Efficient if m ≤ O(poly(d,1/ε, log(1/𝛅))).

❖ Learning from Label Proportions (LLP): Samples are “bags” of the form ({x1, …, xq}, k) 
where 𝚺i𝒇(xi) = k.  Our study: 𝒇 ← Linear Threshold function (LTF) [ 𝟙{rTx + c > 0} ]
➢ LTFs are efficiently PAC learnable to arbitrary accuracy 

❖ LLP Hardness [Saket 21, 22]: Given a set of bags of size ≤ q, s.t. ∃  LTF consistent with 
all bags, NP-hard to find any LTF consistent with  ≥ (1/q + o(1))-fraction of the bags.

Question: What happens for natural/well-behaved distributions?

❖ Bag Oracle for LTF 𝒇, Ɗ = N(𝝁, 𝝨) and fixed q, k :- Ex(𝒇,Ɗ, q, k)
➢ Samples bag with k feature-vecs. from Ɗ|f(x)=1 and q-k from Ɗ|f(x)=0.



Our Results



Normal Estimation
❖ Observation: Sampling a pair of 

feature vectors from a bag
➢ (x1, x2) independently u.a.r: 

Pr[f(x1) ≠ f(x1)] = 2k(q-k)/q2

➢ (z1, z2) pair u.a.r w/o replacement: 
Pr[f(z1) ≠ f(z2)] = 2k(q-k)/q(q-1)

+
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Var[rT(z1-z2)]
Var[rT(x1-x2)]
Normal
LTF

-

-
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❖ Objective: argmax||r||=1r
T𝝨Br/rT𝝨Dr   =   𝝨B

-½PrincipalEigenVector(𝝨B
-½𝝨D𝝨B
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❖ Geometric bound → Bound on sample error

➢ An algorithm to find a high probability estimator of c* given a high probability 
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❖ Bound on sample error → Bound on Generalization error

➢ Generalization Error Bound

❖ Sub-gaussian concentration bounds for thresholded Gaussians.
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