

GeoTMI: Predicting Quantum Chemical Property with Easy-to-Obtain Geometry via Positional Denoising

Hyeonsu Kim, Jeheon Woo, Seonghwan Kim, Seokhyun Moon, Jun Hyeong Kim, Woo Youn Kim*

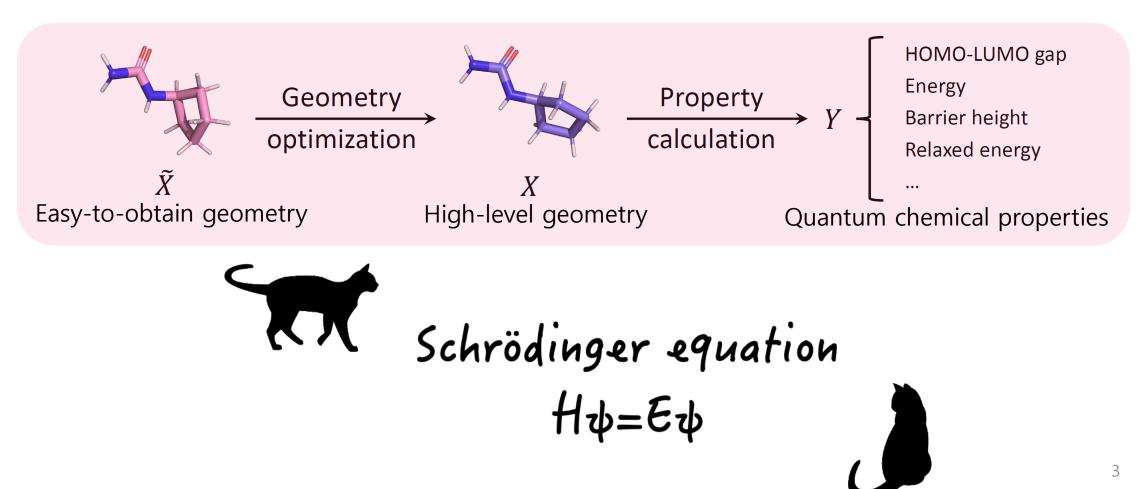
Intelligent Chemistry Lab Department of Chemistry, KAIST

Contents

- 1. Overview
- 2. Introducing GeoTMI
- 3. Experiments
- 4. Conclusion

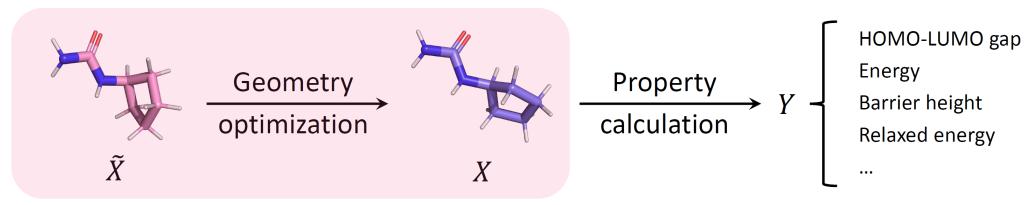
Overview

Quantum chemical calculations

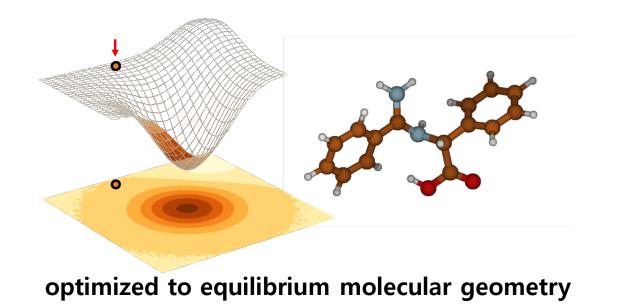


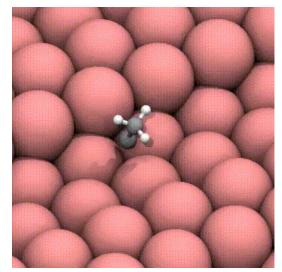
Overview

Geometry optimization to obtain X from \widetilde{X}



To obtain *X*, a geometry optimization process with a starting geometry \tilde{X} should be preceded, which is also based on quantum calculation

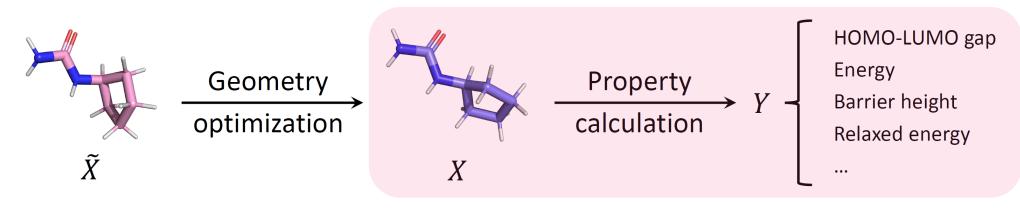




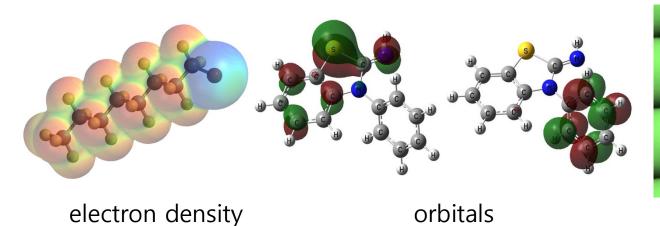
optimized to adsorption geometry

Overview

Calculation of quantum chemical properties (Y) from X



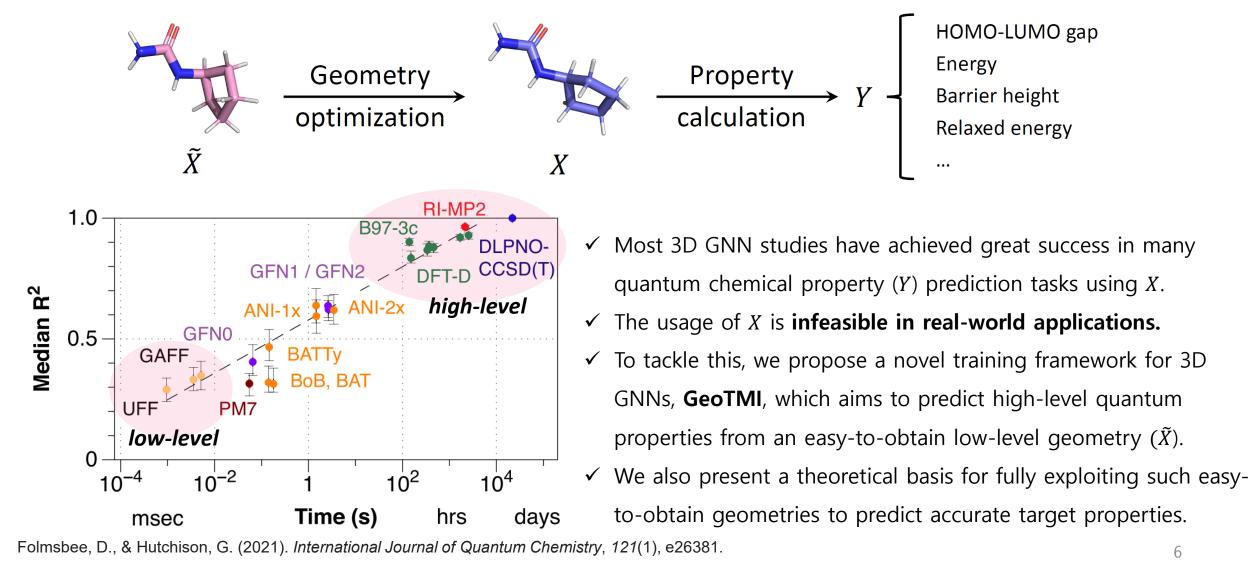
Molecular properties (e.g., QM9, PCQM) **Energies in surface catalyst systems** (e.g., OC20, OC22)



adsorption on surface

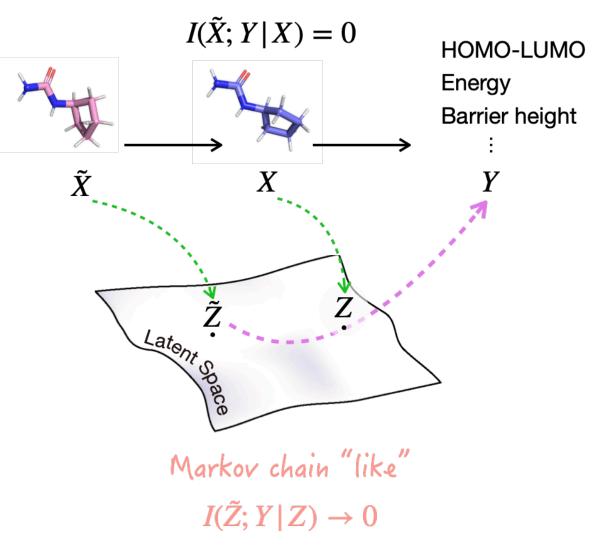
Overview

Geometry optimization to obtain X



Introducing GeoTMI

Markov chain

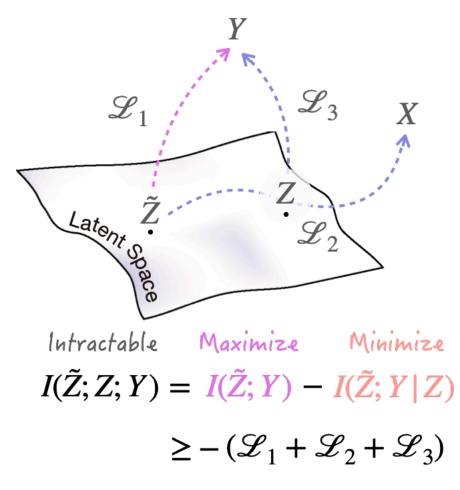


✓ The relation between data (X̃, X, Y) can be assumed as a Markov chain, and thus the conditional mutual information I(X̃; Y|X) must be zero.

- ✓ The goal of GeoTMI is to obtain a proper representation *Ž* in predicting *Y*, by aligning it to *Z* with more enriching information for *Y*.
- ✓ It can be achieved by minimizing $I(\tilde{Z}; Y | Z)$, which is a physical inductive bias derived from the **Markov chain** relation.

Introducing GeoTMI

Training phase



Tractable Surrogate LB

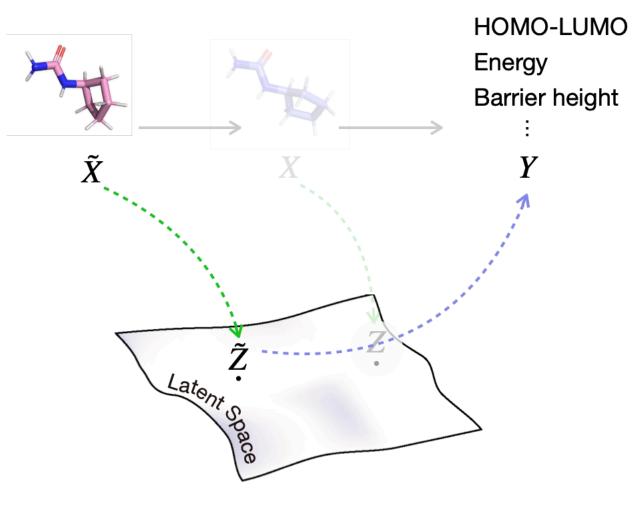
✓ By maximizing three-term mutual information $I(\tilde{Z}; Z; Y)$, we can account for the **physical inductive bias** while **accurately predicting** *Y*.

- ✓ However, because the $I(\tilde{Z}; Z; Y)$ is intractable, we adopted a tractable lower bound (LB) of it.
- ✓ We propose a tractable surrogate LB:

 $\mathcal{L}_1 = H(Y | \tilde{Z})$ $\mathcal{L}_2 = H(X | \tilde{Z})$ $\mathcal{L}_3 = H(Y | Z)$

Introducing GeoTMI

Inference phase



- ✓ While we utilized X in training phase, we circumvent it in inference phase.
- In summary, GeoTMI is a model agnostic training framework, which maximizes "Three-term Mutual Information" (TMI) using surrogate loss.

- Task 1. Molecular property prediction (QM9_M)
- Task 2. IS2RE prediction (OC20)
- Task 3. Reaction property prediction (Reaction barrier height)*

Task	X	Χ
QM9 _M	MMFF-optimized geometries	DFT-optimized geometries
OC20	Initial structures (IS)	Relaxed structures (RS)
Reaction barrier height	Reactant and product geometries	Reactant and transition state geometries

✓ Demonstrate the effectiveness of the GeoTMI in various applicable tasks.

Molecular property prediction (QM9_M)

Table 1: MAEs for QM9's properties. The best performance among the models that do not use X in the inference (Infer.) process is shown in bold. The values of Transformer-M using X were borrowed from Luo et al. [17]. The performance of GeoTMI integrated with SchNet and DimeNet++ is provided in Appendix B.3.

Methods	Input type (Train / Infer.)	U ₀ (meV)	μ (D)	α (Bohr ³)	$\epsilon_{ m HOMO}$ (meV)	$\epsilon_{ m LUMO}$ (meV)	GAP (meV)	$\frac{R^2}{(\mathrm{Bohr}^2)}$	$\frac{C_v}{(\frac{cal}{mol \cdot K})}$	ZPVE (meV)
Transformer-M [17] EGNN	X/X X/X	14.8 12.9	0.0350	- 0.0759	26.5 31.2	23.8 26.6	- 51.1	0.130	0.0336	- 1.59
Transformer-M	2D / 2D	38.2	0.309	0.171	53.6	52.5	77.1	11.4	0.0669	4.79
Transformer-M	2D, X / 2D	43.9	0.245	0.160	48.7	46.3	68.4	10.3	0.0683	3.85
EGNN	${ ilde X}/{ ilde X} \ X, { ilde X}/{ ilde X}$	17.4	0.133	0.125	38.4	34.4	58.0	5.60	0.0445	1.97
EGNN + GeoTMI		14.5	0.100	0.105	35.7	31.2	53.2	4.08	0.0407	1.76
Improvements by Geo	oTMI (%)	16.7	24.8	16.0	7.03	9.30	8.28	27.1	8.54	10.7
Improvements in SchNet (%)		0.00	33.2	18.1	15.3	16.5	13.3	22.6	4.87	7.39
Improvements in DimeNet++ (%)		17.2	9.29	11.4	6.72	7.12	1.78	9.11	9.52	9.52

✓ GeoTMI achieved consistent performance improvements across all properties and models using \tilde{X} , demonstrating effectiveness of GeoTMI.

Molecular property prediction (QM9_M)

Table 1: MAEs for QM9's properties. The best performance among the models that do not use X in the inference (Infer.) process is shown in bold. The values of Transformer-M using X were borrowed from Luo et al. [17]. The performance of GeoTMI integrated with SchNet and DimeNet++ is provided in Appendix B.3.

Methods	Input type (Train / Infer.)	U_0 (meV)	μ (D)	α (Bohr ³)	$\epsilon_{ m HOMO}$ (meV)	$\epsilon_{ m LUMO}$ (meV)	GAP (meV)	$\frac{R^2}{(\mathrm{Bohr}^2)}$	$\frac{C_v}{(\frac{cal}{mol \cdot K})}$	ZPVE (meV)
Transformer-M [17] EGNN	X/X X/X	14.8 12.9	0.0350	- 0.0759	26.5 31.2	23.8 26.6	51.1	0.130	0.0336	- 1.59
Transformer-M	2D / 2D	38.2	0.309	0.171	53.6	52.5	77.1	11.4	0.0669	4.79
Transformer-M	2D, X / 2D	43.9	0.245	0.160	48.7	46.3	68.4	10.3	0.0683	3.85
EGNN	${ ilde X}/{ ilde X} \ X, { ilde X}/{ ilde X}$	17.4	0.133	0.125	38.4	34.4	58.0	5.60	0.0445	1.97
EGNN + GeoTMI		14.5	0.100	0.105	35.7	31.2	53.2	4.08	0.0407	1.76
Improvements by Geo	oTMI (%)	16.7	24.8	16.0	7.03	9.30	8.28	27.1	8.54	10.7
Improvements in SchNet (%)		0.00	33.2	18.1	15.3	16.5	13.3	22.6	4.87	7.39
Improvements in DimeNet++ (%)		17.2	9.29	11.4	6.72	7.12	1.78	9.11	9.52	9.52

✓ While both the MMFF geometry and the molecular the 2D graph are easy-to-obtain inputs, the MMFF geometry contains more useful information for learning the relationship between molecules and their quantum chemical properties.

IS2RE prediction (OC20)

Table 3: Results on the OC20 IS2RE test set with different methods based on Equiformer architectures [46]. The Equiformer* denotes a model that reduces the number of transformer blocks from 18 to 4 while keeping other hyperparameters the same. The best performance among the Equiformer* models is shown in bold, and its improvement rate is shown in the last row.

		Energy MAE (eV) ↓					EwT (%) ↑					
Methods	ID	OOD Ads	OOD Cat	OOD Both	Average	ID	OOD Ads	OOD Cat	OOD Both	Average		
Equiformer + Noisy Nodes [46]	0.417	0.548	0.425	0.474	0.466	7.71	3.70	7.15	4.07	5.66		
Equiformer* Equiformer* + Noisy Nodes Equiformer* + GeoTMI	0.515 0.449 0.425	0.651 0.606 0.583	0.531 0.460 0.440	0.603 0.540 0.521	0.575 0.513 0.492	4.81 6.47 7.60	2.50 3.04 3.86	4.45 5.83 6.97	2.86 3.52 4.03	3.66 4.72 5.62		
Improvement (%)	17.6	10.5	17.1	13.7	14.4	58.0	54.4	56.6	40.9	53.8		

 Both Noisy Nodes and GeoTMI show performance improvements over the baseline Equiformer*, but GeoTMI achieves better performance gains across all metrics.

Conclusion

- ✓ We propose GeoTMI, a model-agnostic training framework designed to exploit easy-toobtain geometry for accurate prediction of quantum chemical properties.
- ✓ We envision that the GeoTMI becomes a new solution to solve the practical infeasibility of high-cost 3D geometry in many other chemistry fields.

Appendix. Experiments

• Reaction property prediction (Reaction barrier height)

Table 2: MAEs for predicted reaction barrier (kcal/mol). The best performance among the models that do not use X in the inference (Infer.) process is shown in bold.

Methods	Input type	Dataset				
	(Train / Infer.)	CCSD(T)-UNI	B97-D3			
DimeRxn	X/X	2.38	1.92			
D-MPNN	2D / 2D	4.59	4.91			
DimeRxn	$ ilde{X}/ ilde{X}$	6.03	7.32			
DimeRxn + GeoTMI	$X, \tilde{X}/\tilde{X}$	3.90	4.17			
Improvements by Geo'	35.3	43.0				

✓ The usefulness of 3D easy-to-obtain geometry with the GeoTMI can be confirmed as in the previous two experiments

Appendix. Experiments

IS2RE prediction (OC20)

Table 3: Results on the OC20 IS2RE test set with different methods based on Equiformer architectures [46]. The Equiformer* denotes a model that reduces the number of transformer blocks from 18 to 4 while keeping other hyperparameters the same. The best performance among the Equiformer* models is shown in bold, and its improvement rate is shown in the last row.

		Energy MAE (eV)↓					EwT (%) ↑					
Methods	ID	OOD Ads	OOD Cat	OOD Both	Average	ID	OOD Ads	OOD Cat	OOD Both	Average		
Equiformer + Noisy Nodes [46]	0.417	0.548	0.425	0.474	0.466	7.71	3.70	7.15	4.07	5.66		
Equiformer* Equiformer* + Noisy Nodes Equiformer* + GeoTMI	0.515 0.449 0.425	0.651 0.606 0.583	0.531 0.460 0.440	0.603 0.540 0.521	0.575 0.513 0.492	4.81 6.47 7.60	2.50 3.04 3.86	4.45 5.83 6.97	2.86 3.52 4.03	3.66 4.72 5.62		
Improvement (%)	17.6	10.5	17.1	13.7	14.4	58.0	54.4	56.6	40.9	53.8		

✓ The prediction performance is similar to the original model for EwT and even better for OOD Ads.