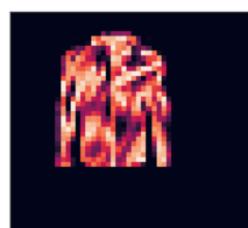


van_der_Schaar

1. Misleading Explanations

Original Image



shirt with probability p

Model's prediction f(x)

e(x)

Translated Image

Model's prediction f(x')

Feature importance e(x')

Many ML models are **robust** to **input symmetries** (e.g. CNNs with translations, GNNs with node permutation).

If a model's predction does not change by applying a symmetry to its input (invariance), we expect the same for the explanations.

Our first finding is that many popular interpretability methods (e.g. GradSHAP, TCAV) do not always verify this desideratum.

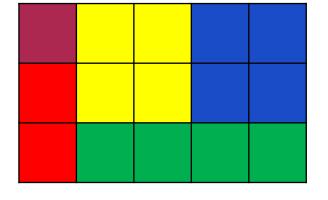
2. Geometric Deep Learning Concepts

Domains. It is the support Ω on which data is defined

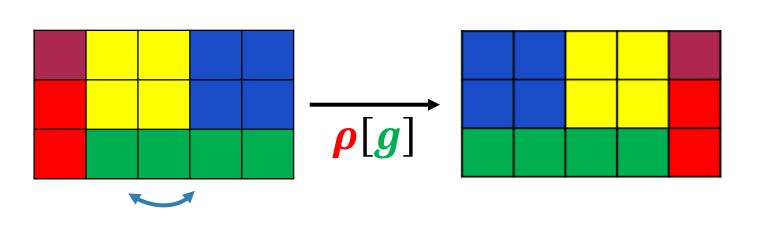
Images: $\Omega = \mathbb{Z}_H \times \mathbb{Z}_W$

Graph data: $\Omega = (\mathcal{V}, \mathcal{E})$

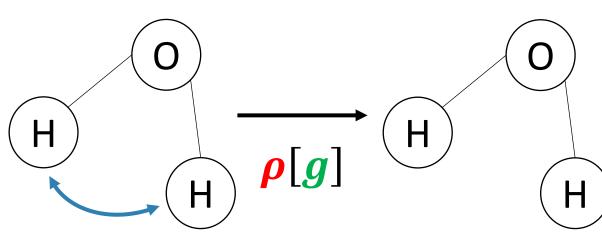
Signals. A signal is a function $x: \Omega \to C$ mapping the domain to a vector space C



Symmetry group. It is a set *G* of transformations preserving a signal information. Each symmetry $g \in G$ acts on x via a representation $\rho[g] \in \mathbb{R}^{d_X \times d_X} : x' = \rho[g]x$



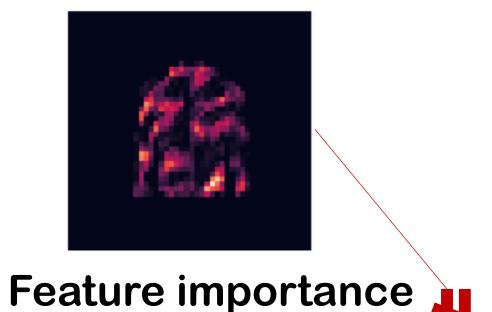
Mirror symmetries



Node permutation

Evaluating the Robustness of Interprerability Methods through Explanation Invariance and Equivariance

Jonathan Crabbé and Mihaela van der Schaar



Molecules: $C = \mathbb{R}^{N_{atoms}} \oplus \mathbb{R}^{N_{valence}}$

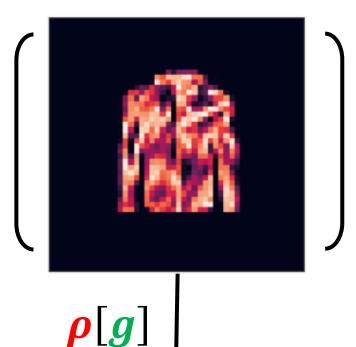
3. Explanation Invariance & Equivariance

Consider an explanation $e: \mathbb{R}^{d_X} \to \mathbb{R}^{d_E}$ for a *G*-invariant model $f: \mathbb{R}^{d_X} \to \mathbb{R}^{d_Y}$. We distinguish 2 different behaviours for explanations under the symmetry group.

Invariant explanations are unaffected by group symmetries

 $e(\rho[g]x) = e(x)$

Most Similar



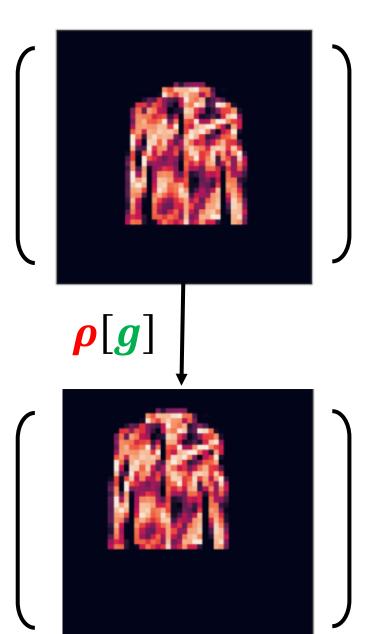
1.41

Most Similar_f

Equivariant explanations transform as the input

 $e(\rho[g]x) = \rho[g]e(x)$

Feat Import_f



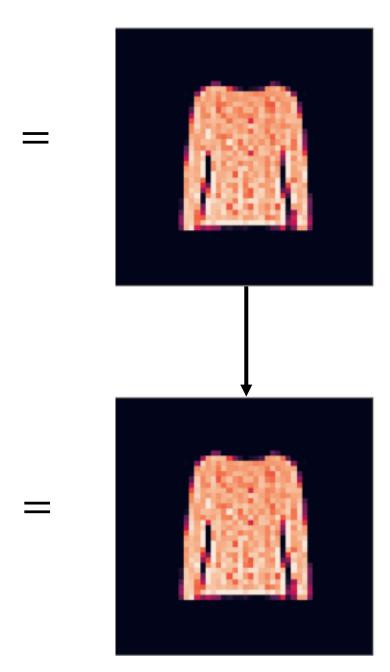
Feat Import_f

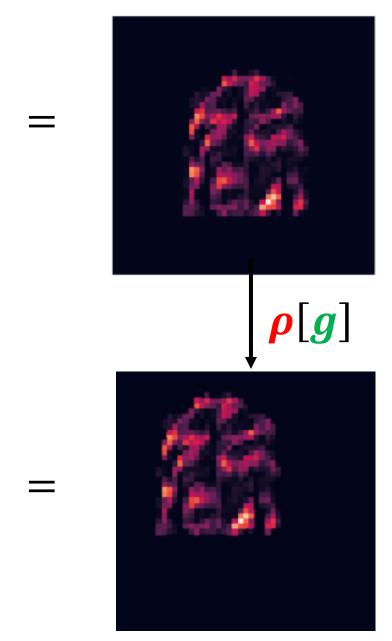
Note that these prescription apply to other interpretability methods (e.g. it makes sense for concept-based explanation to be invariant and for counterfactual explanations to be equivariant).

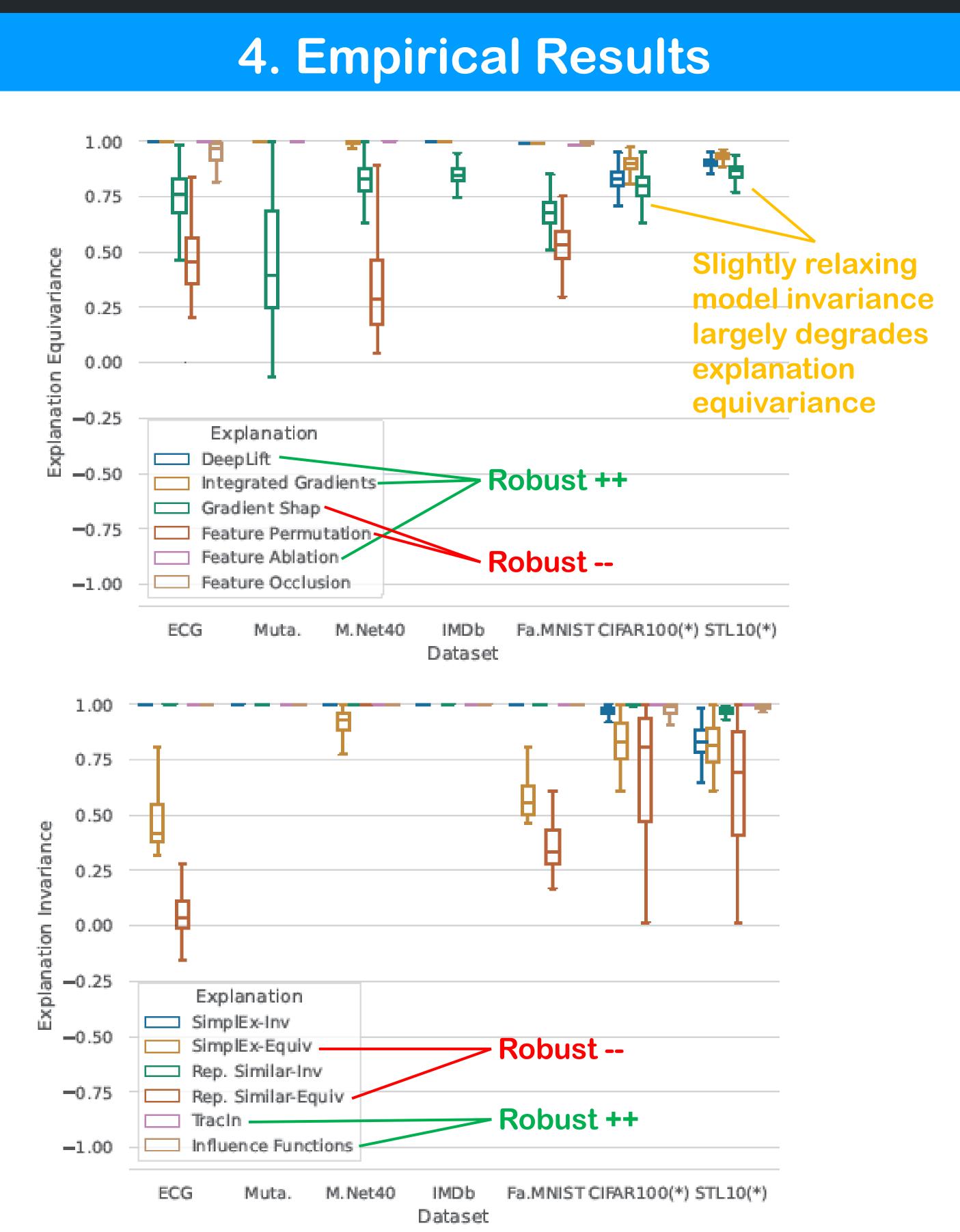
We introduce two metrics to measure to what extent these properties are verified

 $\operatorname{Inv}_{\mathcal{G}}[e, x] = \frac{1}{|\mathcal{G}|} \sum_{a \in \mathcal{C}} \cos[e(\rho[g]x), e(x)] \in [-1, 1]$ $Equiv_{\mathcal{G}}[e, x] = \frac{1}{|\mathcal{G}|} \sum_{\alpha} \cos[e(\rho[g]x), \rho[g]e(x)] \in [-1, 1]$

NB. These metrics are typically aggregated over several x.







A theoretical analysis explains these differences (e.g. gradientbased methods require invariant baselines).

symmetries.

With an empirical analysis on various datasets/modalities/symmetry groups, we observe that some methods are consistently better.

We provide a flowchart to guarantee explanations that are robust to

5. More Information

My website

os:// jonathancrabbe.github.io