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Many ML models are robust to input symmetries (e.g. CNNs with

translations, GNNs with node permutation). Most Similar
f

If a model’s predction does not change by applying a symmetry to
its input (invariance), we expect the same for the explanations.

Our first finding is that many popular interpretability methods (e.g.

GradSHAP, TCAV) do not always verify this desideratum.
Equivariant explanations transform as the input
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Domains. It is the support () on which data is defined Feat Import;

With an empirical analysis on various datasets/modalities/symmetry

Images: Q = Zy X Zy Graph data: Q = (V, &) groups, we observe that some methods are consistently better.

Signals. A signal is a function x: @ — € mapping the domain to a Feat Import; My A theoretical analysis explains these differences (e.g. gradient-
vector space C based methods require invariant baselines).

Q We provide a flowchart to guarantee explanations that are robust to
o . N symmetries.
Q Note that these prescription apply to other interpretability

s 3 . ¢ — mNatoms Nopatence methods (e.g. it makes sense for concept-based explanation to be
RGB Images: € =R Molecules: € = R«om @R invariant and for counterfactual explanations to be equivariant). 5 More Information

Symmetry group. ltis a set G of transformations preserving a signal

information. Each symmetry g € G acts on x via a representation We introduce two metrics to measure to what extent these
plg] € Rex>dx : x' = p[g]x properties are verified The paper

Invg[e, x| = Ellgze;cos[e(p[g]x), e(x)] €[-1,1] x 2 "'" E
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NB. These metrics are typically aggregated over several x.
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