

LinGCN: Structural Linearized Graph Convolutional Network for Homomorphically Encrypted Inference

Hongwu Peng¹ · Ran Ran² · Yukui Luo³ · Jiahui Zhao¹ · Shaoyi Huang¹ · Kiran Thorat¹ · Tong Geng⁴ · Chenghong Wang⁵ · Xiaolin Xu⁶ · Wujie Wen² · Caiwen Ding¹

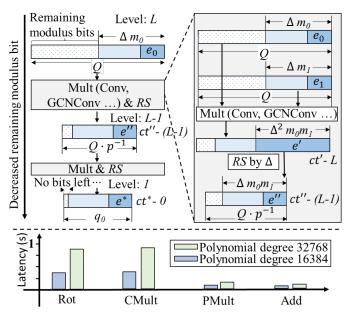
¹University of Connecticut, ²North Carolina State University,

³University of Massachusetts Dartmouth, ⁴University of Rochester,

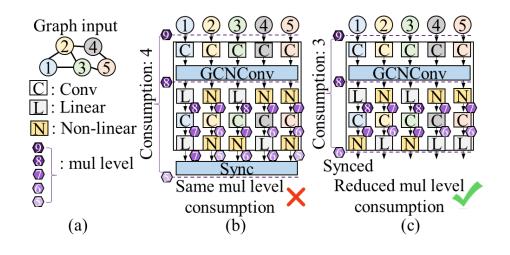
⁵Indiana University Bloomington, ⁶Northeastern University

Background

- Machine-Learning-As-A-Service (MLaaS) faces security challenges.
- Secure private inference (PI): multiparty computation (MPC) and homomorphic encryption (HE).
- HE requires much less communication cost compared to MPC, but still faces computational overhead.

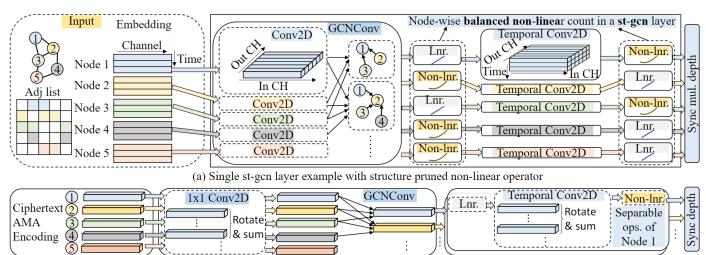


Motivation



Observation 1: Conserving Levels in CKKS

Top: Rescale decreases the ciphertext level. Bottom: Higher polynomial degree leads to longer HE operator's latency.


Observation 2: Structural/synchronized linearization matters!

Unstructured vs. structural linearization. Unstructured one doesn't lead to effective level reduction.

Structural Linearized GCN

(b) Single st-gcn layer computation for homomorphically encrypted inference

Structural linearization:

$$argmin_{W,h} \mathcal{L} = argmin_{W,h} \mathcal{L}_{acc}(f_W(X_0), Y) + \mu \cdot \sum_{i=1}^{2L} ||h_i||_0 \tag{2}$$

$$subject to \forall j, k \in [1, V], (h_{2i,j} + h_{2i+1,j}) = (h_{2i,k} + h_{2i+1,k})$$

$$\frac{\partial \mathcal{L}}{\partial h_{w(i,k)}} = \frac{\partial \mathcal{L}_{acc}}{\partial X_{i,k}} (\sigma_n(Z_{i-1}) - Z_{i-1}) \frac{\partial h_{i,k}}{\partial h_{w(i,k)}} + \mu \frac{\partial h_{i,k}}{\partial h_{w.(i,k)}},$$

$$\frac{\partial h_{i,k}}{\partial h_{w(i,k)}} = Softplus(h_{w(i,k)}) \tag{3}$$

Algorithm 1 Structural Polarization. **Input:** h_w : auxiliary parameter **Output:** *h*: final indicator 1: for i = 0 to L do $s_h, s_l = 0$ and $ind_h, ind_l \leftarrow \emptyset$ 2: for j = 1 to V do 3: 4: if $h_{w(2i,j)} > h_{w(2i+1,j)}$ then $s_h + = h_{w(2i,j)}, s_l + = h_{w(2i+1,j)}$ 5: $ind_h \leftarrow (2i, j), ind_l \leftarrow (2i+1, j)$ 6: 7: else 8: $s_h + = h_{w(2i+1,j)}, s_l + = h_{w(2i,j)}$ 9: $ind_h \leftarrow (2i+1,j), ind_l \leftarrow (2i,j)$ 10: end if 11: end for 12:


12: $h_{ind_h} = s_h > 0$ and $h_{ind_l} = s_l > 0$ 13: end for

Polynomial replacement & overall workflow

$\sigma_n(x) = c \cdot w_2 x^2 + w_1 x + b \quad (4)$

```
\mathcal{L}_p = (1 - \eta) \mathcal{L}_{CE}(f_{W,s}(X_0), Y) + \eta \mathcal{L}_{KL}(f_{W,s}(X_0), f_{W,t}(X_0))
```

$$+ \frac{\tau}{2} \sum_{i=1}^{MSE} MSE(\frac{M_{i,s}}{\|X_{i,s}\|_2}, \frac{M_{i,t}}{\|X_{i,t}\|_2})$$
(5)


```
Input: Pretrain ReLU-based model M_T, lin-
   earization penalty \mu and optim. OP_L, polyno-
   mial replacement optim. OP_P
Output: Level-reduced polynomial model
1: Copy M_S from M_T
2: Initialize h_w for M_S
3: for Structural linearization iterations do
4: Calculate \mathcal{L} via Eq. 2 and Algorithm 1
5:
     Update W and h_w through back propaga-
      tion (Eq. (1)) by minimizing \mathcal{L} using OP_L
6: end for
7: Freeze h_w and h
8: Replace ReLU in M_s with polynomial
9: Initialize w_{poly}
10: for Polynomial replacement iterations do
11:
    Calculate \mathcal{L}_p via Eq. 5
```

12: Update W through back propagation by minimizing \mathcal{L}_p using OP_P

13: end for

Experiment Result

LinGCN is evaluated on the NTU-RGB+D dataset, and excels in the following aspects:

- Reduced multiplication depth: lower encryption level, lower latency
- Minimal accuracy loss
- 10% accuracy improvement over CryptoGCN.

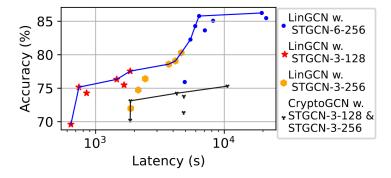


Figure 1: Frontier of LinGCN vs. CryptoGCN [12]

Table 2:	Table 3			
Model	STGCN-3-128			Model
Methods	Non-linear layers	Test acc (%)	Latency (s)	Methods
LinGCN	6	77.55	1856.95	LinGCN
LinGCN	5	75.48	1663.13	LinGCN
LinGCN	4	76.33	1458.95	LinGCN
LinGCN	3	74.27	850.22	LinGCN
LinGCN	2	75.16	741.55	LinGCN
LinGCN	1	69.61	642.06	LinGCN
CryptoGCN	6	74.25	4273.89	CryptoGCN
CryptoGCN	5	73.12	1863.95	CryptoGCN
CryptoGCN	4	70.21	1856.36	CryptoGCN

Table 3: STGCN-3-256 comparison STGCN-3-256 [ode] Non-linear Test acc Latency ethods (%) (s) layers 80.29 4632.05

79.07

78.59

76.41

74.74

71.98

75.31

73.78

71.36

4166.12

3699.49

2428.88

2143.46

1873.40

10580.41

4850.93

4831.93

6

5

4

3

2

6

5

4

Table 4: LinGCN for STGCN-6-256 model.

Model	STGCN-6-256			
Methods	Non-linear	Test acc	Latency	
	layers	(%)	(s)	
LinGCN	12	85.47	21171.80	
LinGCN	11	86.24	19553.96	
LinGCN	7	85.08	8186.35	
LinGCN	5	83.64	7063.51	
LinGCN	4	85.78	6371.39	
LinGCN	3	84.28	5944.81	
LinGCN	2	82.27	5456.12	
LinGCN	1	75.93	4927.26	