

Kazu Ghalamkari Mahito Sugiyama

RIKEN AIP

National Institute of Informatics SOKENDAI

Yoshinobu Kawahara

RIKEN AIP Osaka University

The 37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans in USA, December 11–14, 2023

Difficulties in tensor factorization

Model selection is not intuitive.

Difficulties in tensor factorization

Model selection is not intuitive.

Optimization is difficult.

- The objective function is typically non-convex.
 Initial values dependency
- **(2)** Solution often might be indeterminate.

A convex, stable and intuitive tensor factorization is desired.

One-body approx.

 $\overline{\mathbf{P}}_{ijkl} = p_i^{(1)} p_j^{(2)} p_k^{(3)} p_l^{(4)}$

Rank-1 approximation (mean-field approximation)

[NeurlPS 2021 Ghalamkari, K., Sugiyama, M.]

Rank-1 approximation (mean-field approximation)

[NeurlPS 2021 Ghalamkari, K., Sugiyama, M.]

Larger Capability

Theoretical idea behind proposal

 $\sum_{ijk} \mathcal{P}_{ijk} = 1, \quad (i, j, k) \in \Omega = \{(1, 1, 1), \dots, (I, J, K)\}$

 \bigcirc We regard a normalized tensor $\mathcal P$ as a discrete joint probability distribution whose sample space is an index set

 \mathbf{Q} We use information geometry to formulate factorization as convex problem

Describing tensor factorization in θ **-coordinate system makes it convex problem** 10

Reconstruction for 40 × 40 × 3 × 10 tensor (Width, height, Colors, # Images)

 7
 8
 9
 10

 7
 8
 9
 10

Color is uniform within each image. Color whci whci

Larger

ity

Intuitive model design that captures the relationship between modes

Rank-free convex nonnegative tensor factorization

Many-body Approximation

- Convex optimization always provide unique solution
- More intuitive design than rank tuning