Many-body Approximation for Non-negative Tensors

Kazu Ghalamkari

RIKEN AIP

Mahito Sugiyama

National Institute of Informatics SOKENDAI

Yoshinobu Kawahara

RIKEN AIP
Osaka University

Difficulties in tensor factorization

Model selection is not intuitive.

Decomp. with tensor networks Tensor Train decomposion Tensor ring decomposion $-\sqrt{\boldsymbol{P}} \simeq \stackrel{\frac{1}{\chi^{(1)}}-\sqrt{\chi^{(2)}}-\frac{1}{\chi^{(3)}} .}{ }$

Difficulties in tensor factorization

Model selection is not intuitive.

(2) The objective function is typically non-convex.

- Initial values dependency
(2) Solution often might be indeterminate.

A convex, stable and intuitive tensor factorization is desired.

Many-body approximation for non-negative tensors

$$
\begin{aligned}
& \text { Energy function } \\
& \boldsymbol{\mathcal { P }}_{i j k l}=\frac{1}{Z} \exp \left[-E_{\theta}(i, j, k, l)\right] \\
& \sum_{i j k l} \mathcal{P}_{i j k l}=1
\end{aligned}
$$

Many-body approximation for non-negative tensors

$$
\begin{aligned}
\mathcal{P}_{i j k l} & =\frac{1}{Z} \exp [-\underbrace{}_{\substack{\text { Energy function } \\
\text { 亿 } i, j, k, l) \\
\text { Natural parameter } \\
\text { of exponential distribution family. }}} \sum_{i j k l} \mathcal{P}_{i j k l}=1 \\
& =\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{j k l}^{(234)}+E_{i j k l}^{(1234)}\right]
\end{aligned}
$$

Many-body approximation for non-negative tensors

$$
\begin{aligned}
& \text { Energy function }
\end{aligned}
$$

$$
\begin{aligned}
& \text { of exponential distribution family. } \\
& =\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{\substack{\text { Control relation between } \\
\text { mode- } k \text { and mode-l. }}}^{E_{j k l}^{(234)}}+E_{i j k l}^{(1234)}\right]
\end{aligned}
$$

Many-body approximation for non-negative tensors

$$
\begin{aligned}
\boldsymbol{P}_{i j k l} & =\frac{1}{Z} \exp \left[-E_{\theta}(i, j, k, l)\right] \\
& =\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{j k l}^{(234)}+E_{i j k l}^{(1234)}\right]
\end{aligned}
$$

One-body approx.

$$
\overline{\mathcal{P}}_{i j k l}=p_{i}^{(1)} p_{j}^{(2)} p_{k}^{(3)} p_{l}^{(4)}
$$

Rank-1 approximation

(mean-field approximation)

[NeurIPS 2021 Ghalamkari, K., Sugiyama, M.]

Many-body approximation for non-negative tensors

$$
\begin{aligned}
& \begin{aligned}
& \boldsymbol{P}_{i j k l}=\frac{1}{Z} \exp \left[-E_{\theta}(i, j, k, l)\right] \\
&=\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{j k l}^{(234)}+E_{i j k l}^{(1234)}\right] \\
& \begin{array}{c}
\text { Control relation between } \\
\text { mode-k and mode-l. }
\end{array} \\
& \text { One-body approx. } \text { Two-body approx. }
\end{aligned} \\
& \overline{\boldsymbol{P}}_{i j k l}=p_{i}^{(1)} p_{j}^{(2)} p_{k}^{(3)} p_{l}^{(4)} \quad \overline{\boldsymbol{\Phi}}_{i j k l}=X_{i j}^{(12)} X_{i k}^{(13)} X_{i l}^{(14)} X_{j k}^{(23)} X_{j l}^{(24)} X_{k l}^{(34)}
\end{aligned}
$$

Rank-1 approximation

(mean-field approximation)

[NeurIPS 2021 Ghalamkari, K., Sugiyama, M.]
Larger Capability

Many-body approximation for non-negative tensors

$$
\boldsymbol{\mathcal { P }}_{i j k l}=\frac{1}{Z} \exp \left[-E_{\theta}(i, j, k, l)\right]
$$

$$
=\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{j k l}^{(234)}+E_{i j k l}^{(1234)}\right]
$$

Two-body approx.

$$
\overline{\mathcal{P}}_{i j k l}=X_{i j}^{(12)} X_{i k}^{(13)} X_{i l}^{(14)} X_{j k}^{(23)} X_{j l}^{(24)} X_{k l}^{(34)}
$$ mode- k and mode-l. mode-j, -k and -l.

Two-body
Intuitive modeling focusing on interactions between modes

Interaction

Three-body
Interaction

Three-body approx.
$\bar{\Phi}_{i j k l}=\chi_{i j k}^{(123)} \chi_{i j l}^{(124)} \chi_{i k l}^{(134)} \chi_{j k l}^{(234)}$

Larger Capability

One-body approx.

$$
\overline{\mathcal{P}}_{i j k l}=p_{i}^{(1)} p_{j}^{(2)} p_{k}^{(3)} p_{l}^{(4)}
$$

Rank-1 approximation (mean-field approximation)
[NeurIPS 2021 Ghalamkari, K., Sugiyama, M.]

The global optimal solution $\overline{\mathcal{P}}$ minimizing KL divergence from \mathcal{P} can be obtained by a convex optimization.

Theoretical idea behind proposal
 Index is discrete random variable

$$
\sum_{i j k} \mathcal{P}_{i j k}=1
$$

$$
(i, j, k) \in \Omega=\{(1,1,1), \ldots,(I, J, K)\}
$$

We regard a normalized tensor \mathcal{P} as a discrete joint probability distribution whose sample space is an index set
B We use information geometry to formulate factorization as convex problem
Geometry of $\boldsymbol{\theta}$-space

Describing tensor factorization in θ-coordinate system makes it convex problem

Reconstruction for $40 \times 40 \times 3 \times 10$ tensor (width, height, Colors, \# images)

Color is uniform within each image.

Three-body Approx.

Larger

Intuitive model design that captures the relationship between modes

Rank-free convex nonnegative tensor factorization

Many-body Approximation

$$
\begin{aligned}
\mathcal{P}_{i j k l} & =\exp \left[\sum_{i^{\prime}=1}^{i} \sum_{j^{\prime}=1}^{j} \sum_{k^{\prime}=1}^{k} \sum_{l^{\prime}=1}^{l} \theta_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}\right] \\
& =\frac{1}{Z} \exp \left[E_{i}^{(1)}+\ldots+E_{l}^{(4)}+E_{i j}^{(12)}+\ldots+E_{k l}^{(34)}+E_{i j k}^{(123)}+\ldots+E_{j k l}^{(234)}+E_{i j k l}^{(1234)}\right]
\end{aligned}
$$

One-body Approx.

Two-body Approx.

Three-body Approx.

- Convex optimization always provide unique solution
- More intuitive design than rank tuning

