

Revisiting Scalarization in Multi-Task Learning: A Theoretical Perspective

Speaker: Yuzheng Hu

*equal contribution. **Qilong is applying for PhD!**

https://arxiv.org/pdf/2308.13985.pdf

Multi-task learning

Task-Specific Modules (A)

- Goal: learn multiple
 related tasks
 simultaneously
- **Benefit**: improved generalization
- Application:

autonomous driving

Two lines of research

• Linear scalarization

• First choose a *fixed* set of non-negative weights $\{\lambda_i\}_{i \in [k]}$, then solve the scalar optimization problem:

$$\theta^* = \arg\min_{\theta} \sum_{i \in [k]} \lambda_i L_i(\theta)$$

Simple and scalable

Specialized multi-task optimizers (SMTOs)

- *Dynamic* multi-objective optimization
- Goal: finding *Pareto-optimal solutions*
- MGDA¹, Gradient Surgery²...

¹ Désidéri, Jean-Antoine. "Multiple-gradient descent algorithm (MGDA) for multiobjective optimization." *Comptes Rendus Mathematique* 350.5-6 (2012): 313-318.

² Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Advances in Neural Information Processing Systems 33 (2020): 5824-5836.

Heated debate

In Defense of the Unitary Scalarization for Deep Multi-Task Lea

Do Current Multi-Task Optimization Methods in Deep Learning Even Help?

Vitaly Kurin* University of Oxford vitaly.kurin@cs.ox.ac.uk

Unive adepalma@

Alessa

Ilya Kostrikov University of California, Berkeley New York University Shimon Whiteson University of Oxford

Mounta dxin@g

Kurin et al., NeurIPS 2022

Derrick Xin*BehrGoogle ResearchGooMountain View, CAMountaindxin@google.comghorba

Behrooz Ghorbani* Google Research Mountain View, CA ghorbani@google.com Ankush Garg Google Research Mountain View, CA ankugarg@google.com

Orhan Firat Google Research Mountain View, CA orhanf@google.com Justin Gilmer Google Research Mountain View, CA gilmer@google.com

Xin et al., NeurIPS 2022

With proper choices of hyperparameters and regularization techniques, scalarization matches or even surpasses SMTOs.

Motivation

- Understand linear scalarization on the *representation* level
- *Full-exploration* problem:

For every Pareto optimum v, does there exist a set of weights, such that the optimal solution of the linearly scalarized objective corresponds to v?

From Emmerich and Deutz, 2018

Theorem [BV04] When the loss functions are convex, linear scalarization with proper weights can reach every Pareto optimum.

What if the loss functions are non-convex?

[BV04] Boyd, Stephen P., and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

Setting

• Two-layer multi-task linear network for **regression**: for task $i \in [k]$, the prediction is given by

$$f_i(x, W, a_i) = x^\top W a_i$$

$$x \in \mathbb{R}^p$$
 input
 $W \in \mathbb{R}^{p imes q}$ shared layer
 $a_i \in \mathbb{R}^q$ task-specific head

• Shared input $X \in \mathbb{R}^{n \times p}$, target vector $y_i \in \mathbb{R}^n$, training loss for task i: $L_i(W, a_i) = \|XWa_i - y_i\|^2$

Setting (cont.)

- Over-parametrized regime ($q \ge k$)
 - [WZR20] (linear case): The network has sufficient capacity to fit all tasks perfectly; the Pareto front reduces to a singleton $\{\vec{0}\}$ and can be achieved by linear scalarization with any choices of convex coefficients
 - True for general non-linear models (our work)
- Under-parametrized regime (q < k, our focus)
 - q = 1 --- extremely under-parametrized
 - q = k 1 --- mildly under-parametrized

[WZR20] Wu, Sen, Hongyang R. Zhang, and Christopher Ré. "Understanding and Improving Information Transfer in Multi-Task Learning." *International Conference on Learning Representations*. 2019.

Main results

- Denote $\hat{y}_i = X(X^{\top}X)^{\dagger}X^{\top}y_i$ as the optimal linear predictor for task i
- Let $\hat{Y} = [\hat{y}_1, \cdots, \hat{y}_k] \in \mathbb{R}^{n \times k}$
- We develop *sufficient and necessary* conditions for full exploration

Theorem (q = 1): Linear scalarization is capable of fully exploring the Pareto front, if and only if $G := \hat{Y}^{\top}\hat{Y}$ is doubly non-negative, i.e., the inner products for all pairs of \hat{y}_i and \hat{y}_j are non-negative, up to negating the direction of some \hat{y}_i 's.

Theorem (q = k - 1): Linear scalarization is capable of fully exploring the Pareto front, if and only if $Q = G^{-1}$ is doubly non-negative, up to negating the direction of some \hat{y}_i 's.

Key observations

Multi-surface structure

Gradient disagreement

Experiment

SMTOs are capable of finding balanced solutions, which are not achievable by linear scalarization

Takeaway

- We demonstrate a **representation limitation** of linear scalarization: it is generally not capable of full exploration for linear MTL
- On the empirical side, we reveal the potential of SMTOs in finding balanced solutions

We hope our work could:

- Foster a balanced development among linear scalarization and SMTOs
- Motivate the research community to develop a better theory explaining the empirical success of linear scalarization

Paper

Thank you!

Meet us at Great Hall & Hall B1+B2 #1004, Dec 12th (Tuesday) 5:15 - 7:15 pm!