Preference-grounded Token-level Guidance for Language Model Training

Shentao Yang¹, Shujian Zhang¹, Congying Xia², Yihao Feng², Caiming Xiong², Mingyuan Zhou¹

¹The University of Texas at Austin, ²Salesforce Research

November, 2023

- Research Question: how to effectively ground sequence-level preference into dense token-level guidance for language model training

- Research Question: how to effectively ground sequence-level preference into dense token-level guidance for language model training
 - Sequence: text-sequence, e.g., a sentence or a paragraph of words.

TL;DR

- Research Question: how to effectively ground sequence-level preference into dense token-level guidance for language model training
 - Sequence: text-sequence, e.g., a sentence or a paragraph of words.

This

• Evaluations: automatic evaluation metrics or humans, e.g. length

is

• Preference: an ordering of multiple text-sequences based on the evaluations of

Background: How to train a language model?

- By the token-level cross-entropy loss
- Token-level: each token in the sentend training loss

- Token-level: each token in the sentence has a corresponding term in the overall

Background: Preference is NOT token-level

- Preference is provided only at the sequence level

- "Which of the two sequences is better?"

Only available after the entire sequence has been generated

• Evaluates the whole sequence

Issue: Granularity mismatch

- Guiding training: granularity mismatch
 - Mismatch: sequence-level preference v.s. token-level training loss

- Harm training process — higher gradient variance and lower sample efficiency!

- Mismatch: sequence-level preference v.s. token-level training loss

- Mismatch: sequence-level preference v.s. token-level training loss
- Our solution: an alternate training process

- Mismatch: sequence-level preference v.s. token-level training loss
- Our solution: an alternate training process
 - (1) Ground sequence-level preference into token-level training guidance

- Mismatch: sequence-level preference v.s. token-level training loss
- Our solution: an alternate training process
 - 1) Ground sequence-level preference into token-level training guidance
 - (2) Improve the LM π_{θ} using the learned guidance

Our method: Ground preference into training guidance

- The LM is fixed

- Goal: learn a parametrized token-level "reward" function

Score the word selection at each step of the sequence

"Is it good to select this token here?"

Our method: Using the reward function

- Provide dense training guidance

• Dense guidance: how to select each token in the sequence

- Setting: no supervised data, LM needs to discover good text by itself

- Select the next token such that the resulting reward is high

- Implemented by the classical REINFORCE method

Experiment: Task description

- Prompt generation for text classification

 - Evaluation metric: test accuracy
 - Preference source: the stepwise metric in RLPrompt¹

¹ Deng, Mingkai, et al. "Rlprompt: Optimizing discrete text prompts with reinforcement learning." arXiv preprint arXiv:2205.12548 (2022).

Goal: generate text prompts to ask a large language model to classify texts

Dataset: SST-2 and Yelp Polarity (sentiment, binary); AG News (topic, four-way)

- Also experiment on text summarization — check paper for results & discussions!

Experiment: Main results

Table 1: Test accuracy on the prompt task. Best overall result is bold and best discrete-prompt result is underlined if different. The reported results are mean (standard deviation) over three random seeds.

		SST-2	Yelp P.	AG News
Finetuning	Few-shot Finetuning	80.6 (3.9)	88.7 (4.7)	84.9 (3.6)
Continuous Prompt	Soft Prompt Tuning BB Tuning-50 AutoPrompt	73.8 (10.9) 89.1 (0.9) 75.0 (7.6)	88.6 (2.1) 93.2 (0.5) 79.8 (8.3)	82.6 (0.9) 83.5 (0.9) 65.7 (1.9)
Discrete Prompt	Manual Prompt In-Context Demo Instructions GrIPS RLPrompt	82.8 85.9 (0.7) 89.0 87.1 (1.5) 90.5 (1.5)	83.0 89.6 (0.4) 84.4 88.2 (0.1) 94.2 (0.7)	76.9 74.9 (0.8) 54.8 65.4 (9.8) 79.7 (2.1)
	Ours (AVG) Ours (MIN) Ours (MAX)	92.6 (1.7) 91.9 (1.8) 91.2 (2.5)	94.7 (0.6) 94.4 (0.8) 94.8 (0.5)	82.8 (1.5) 82.4 (1.1) <u>83.3</u> (1.4)

- Competitive and stable results on all three datasets

Experiment: Main results

Table 1: Test accuracy on the prompt task. Best overall result is bold and best discrete-prompt result is underlined if different. The reported results are mean (standard deviation) over three random seeds.

		SST-2	Yelp P.	AG News
Finetuning	Few-shot Finetuning	80.6 (3.9)	88.7 (4.7)	84.9 (3.6)
	Soft Prompt Tuning	73.8 (10.9)	88.6 (2.1)	82.6 (0.9)
Continuous	BB Tuning-50	89.1 (0.9)	93.2 (0.5)	83.5 (0.9)
Prompt	AutoPrompt	75.0 (7.6)	79.8 (8.3)	65.7 (1.9)
	Manual Prompt	82.8	83.0	76.9
	In-Context Demo	85.9 (0.7)	89.6 (0.4)	74.9 (0.8)
	Instructions	89.0	84.4	54.8
Discrete	GrIPS	87.1 (1.5)	88.2 (0.1)	65.4 (9.8)
Prompt	RLPrompt	90.5 (1.5)	94.2 (0.7)	79.7 (2.1)
	Ours (AVG)	92.6 (1.7)	94.7 (0.6)	82.8 (1.5)
	Ours (MIN)	91.9 (1.8)	94.4 (0.8)	82.4 (1.1)
	Ours (MAX)	91.2 (2.5)	94.8 (0.5)	<u>83.3</u> (1.4)

- RLPrompt: directly optimize sequence-level feedback by RL method
- sequence-level feedback

Improvement \rightarrow our finer token-level guidance is more effective than coarse

to use finer guidance, compared to coarse feedback

- To train a sequential-decision-making model, such as LM, it can be more effective

