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Motivation

Neural Operators learn mappings between infinite dimensional function spaces.
Their analytical properties, including injectivity and bijectivity, are poorly
understood.

In this work we extend prior work for finite-dimensional networks to the
infinite-dimensional setting. Our work enables applications for

Generative models in infinite-dimensional function space

PDE-based inverse problems

We show that injective neural operators are universal approximators (Theorem 2)

and, under appropriate assumptions, may be inverted by neural operators

(Theorem 3).
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Neural operator

D ⊂ Rd, Lipschitz bounded domain

L2(D;Rh) = L2(D)h, L2 space of Rh-value function on D

Definition 1 (Neural operators [Kovachki et al., 2021])

We define a neural operator G : L2(D)din → L2(D)dout by

G := TL+1 ◦ LL ◦ · · · L1 ◦ T0,

Lℓ : L
2(D)dℓ → L2(D)dℓ+1, (Lℓv)(x) := σ(Wℓ(x)v(x) +Kℓv(x) + bℓ(x)),

σ : R → R, non-linear activation operating element-wise

Wℓ ∈ C(D;Rdℓ+1×dℓ), pointwise matrix multiplications,

Kℓ : L
2(D)dℓ → L2(D)dℓ+1, linear integral operators,

bℓ ∈ L2(D)dℓ+1 , bias functions

T0 : L2(D)din → L2(D)d1 , lifting operator

TL+1 : L2(D)dL+1 → L2(D)dout , projection operator
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Class of neural operators

We define

NOL(σ;D, din, dout) :=
{
G : L2(D)din → L2(D)dout

∣∣∣
G = KL+1 ◦ (KL + bL) ◦ σ · · · ◦ (K2 + b2) ◦ σ ◦ (K1 + b1) ◦ (K0 + b0),

Kℓ : f 7→
∫
D

kℓ(·, y)f(y)dy
∣∣∣∣
D

, kℓ ∈ L2(D ×D;Rdℓ+1×dℓ),

bℓ ∈ L2(D;Rdℓ+1), dℓ ∈ N, d0 = din, dL+2 = dout, ℓ = 0, ..., L+ 2
}
,

and

NOinj
L (σ;D, din, dout) := {G ∈ NOL(σ;D, din, dout) : G is injective}.
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Universal approximation theorem

Theorem 2

Let G+ : L2(D)din → L2(D)dout be continuous such that for all R > 0 there is
M > 0 so that∥∥G+(a)

∥∥
L2(D)dout

≤ M, ∀a ∈ L2(D)din , ∥a∥L2(D)din ≤ R,

We assume that either σ = Leaky ReLU or σ = ReLU. Then, for any compact
set K ⊂ L2(D)din , ϵ ∈ (0, 1), there exists L ∈ N and G ∈ NOinj

L (σ;D, din, dout)
such that

sup
a∈K

∥∥G+(a)−G(a)
∥∥
L2(D)dout

≤ ϵ.

We don’t have any dimensionality restrictions. In the case of Euclidean spaces

Rd, [Puthawala et al., 2022] requires that 2din + 1 ≤ dout before all continuous

functions G+ : Rdin → Rdout can be uniformly approximated in compact sets by

injective neural networks.
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Non-linear neural operator

We consider layers of the form

(Lℓv)(x) = σ(Wℓ(x)v(x) +Kℓ(v)(x)), x ∈ D,

where Kℓ is non-linear integral operators

Kℓ(u)(x) =

∫
D

kℓ(x, y, u(x), u(y))u(y)dy,

Generalization of the attention mechanism in transformers [Kovachki et al.,
2021]

k(x, y, v(x), v(y)) ≡ softmax◦ < Av(x), Bv(y) >,

Improve performance of integral autoencoders [Ong et al., 2022]
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Construction of the inverse

As simple case, n = 1, D ⊂ R is a bounded interval. Consider a map
F : L2(D) → L2(D) defined by

F (u)(x) = W (x)u(x) +

∫
D

k(x, y, u(y))u(y)dy, u ∈ L2(D),

where W ∈ C1(D;R) satisfies 0 < c1 ≤ W (x) ≤ c2, k ∈ C3(D ×D ×R;R) and

∥W∥C1(D) ≤ c0, ∥k∥C3(D×D×R) ≤ c0,

and for all u0 ∈ H1(D), the Fréchet derivative

DF [u0] : H
1(D) → H1(D) is injective.

Theorem 3

Assume that F : H1(D) → H1(D) is bijective. Let Y ⊂ BC1,α(D)(0, R)where

α > 0. The inverse of F : H1(D) → H1(D) in Y can be written as a limit of
neural operators having distributional kernels.
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