Riskfuel

Learning the Efficient Frontier

Philippe Chatigny, Ivan Sergienko, Ryan Ferguson, Jordan Weir, Maxime Bergeron

https://riskfuel.com

The Efficient Frontier

Problem: The efficient frontier (EF) is a resource allocation problem where one has to find an optimal portfolio maximizing a reward at a given level of risk.

How it is Solved: Traditionally, by solving a convex optimization problem (optimal solution)

A convex optimization problem

The convex optimization problems is easy to solve:

Compute the portfolio with minimal risk (*Eq. (1)*)
if we have budget for risk, increase till we can't (*Eq. (2)*)

In Practice: The parameters of the convex optimization are stochastic.

Challenge: Monte Carlo simulation is often used to measure the expected reward for a given scenario. <u>the</u> <u>cost of running the optimization become the principal</u> <u>bottleneck</u>

Γ1	0	0	0]	[0.591]		
0	1	0	0		0.749		
0	0	1	0		0.412		
	0	0	1		0.545		
_1	Õ	Õ	$\overline{0}$		0.		
	-1	Õ	Õ		0		
$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	-1	Ő	B =	0		
	0	0	_1		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		
_1	-1	-1	_1		-0.81		
1	1	1	1		1		
	1	0	$\hat{0}$		0.74		
	0	1	1		0.74		
	0]			
$m{C} = [0, 0, 1, 1]; m{\zeta}_{ ext{MAX}} = [0.74, 0.58]$							
$oldsymbol{X}_{ ext{MAX}} = [0.5910.749, 0.412, 0.545]$							
$oldsymbol{X}_{ ext{MIN}} = [0,0,0,0]$							
$lpha_{ ext{min}}=0.81, lpha_{ ext{max}}=1$							
1	-			-			
$oldsymbol{\psi} := ext{minimize } rac{1}{2}oldsymbol{x}^{ op}oldsymbol{Q}oldsymbol{x} ext{ subject to } oldsymbol{a}_i^{ op} \leq oldsymbol{b}_i ext{ } orall i \in 1, \cdots, w,$					(1)		
$\boldsymbol{\phi} := ext{minimize} \ - \boldsymbol{R}^{\top} \boldsymbol{x} ext{ subject to } rac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \leq \mathcal{V}_{ ext{target}} ext{ and } \boldsymbol{a}_i^{\top} \leq \boldsymbol{b}_i orall i \in 1, \cdots, w.$							(2)

$$\boldsymbol{Z}_{\text{output}} = \text{EF}(\boldsymbol{Z}_{\text{input}}) = \boldsymbol{\psi} \text{ if } \mathcal{V}_{\text{min}} > \mathcal{V}_{\text{target}} \text{ else } \boldsymbol{\phi}. \tag{3}$$

Learning the Efficient Frontier

Need for speed 🕅:

- 1. Rewrite the optimization to work on GPU: mostly impractical
- 2. Learn the optimization directly: Robustness , Accuracy , Speed & & Flexibility

NeuralEF: Reformulating the EF problem...

$$\theta_{\text{NeuralEF}} = \underset{\theta_{\text{NeuralEF}}^{*}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=0}^{N} \mathcal{L}(\text{NeuralEF}(\boldsymbol{Z}_{\text{input},i}; \theta_{\text{NeuralEF}}), \text{EF}(\boldsymbol{Z}_{\text{input},i})).$$
(11)

R

Three main ideas:

1) From optimization inputs to Seq2Seq

Evaluated At scale

Trained on a large synthetic datasets

In-domain Interpolation Accuracy

Feature	Range	Feature	Range
(\mathcal{V}_{target}) volatility target	[0.05, 0.15]	(V) volatility	[0, 2]
(\mathbf{P}) Correlation matrix	[-1, 1]	(\mathbf{R}) returns	[-1,2]
$(\boldsymbol{\zeta}_{\mathrm{MAX}})$ maximum class allocation	[0.2, 1.0]	(wt_{MAX}) maximum asset allocations	[0.01, 1.0]
(α_{MIN}) Allocation lower bound	[0.6, 1.0]	(α_{MAX}) Allocation upper bound	1.0
(n) Number of asset sampled	[2,12]	(m) Possible class	[0,1,2]

Table 1: Input Domain of optimization input used for training.

Robustness: Example with a "worst-case" prediction

Allocation

0.00375

0.00350

0.00325

0.00300

0.00275

0.00250

0.00225

0.00200

0.0020

Portfolio Return

0.5

Ground Truth

0.0

1.0

0.0030

Ground Truth

0.0035

Portfo

0.0025

Accuracy 🕝

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Prediction

Throughput Evaluation and Carbon Footprint

Throughput at scale

DGAR at scale

Table 4: Maximum average throughput achieved. Note that two Intel Xeon Platinum 8480 CPUs were used simultaneously on a dual-socket machine to achieve the best throughput.

NeuralEF (fp32)

NeuralEF (fp16)

NeuralEF (fp16) clean-only

NeuralEF (fp16) no preprocessing

221787.48

559.15

10377.80

CO2 emission on inference: ≈46X time less than the base optimization on a desktop CPU (\$)

77859.95

167594.15

173388.66

170650.62

NeuralEF (bf16 + AMX)

Concurrent processes (23)

singe-thread

AMD 5950X (reference)

Limitations and Broader Challenges

1) Out of domain Generalization

2) Extend the model to other convex optimizations

3) Accelerate the execution of computer programs that rely on the expected value of convex optimizations problems.

Conclusion

We introduce NeuralEF, a model that can learn the EF convex optimization problem with heterogenous linear constraints robustly

We show how converting an optimization as SEQ2EQ is a viable solution to accelerate large-scale simulation while handling discontinuous behavior