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Problem Formulation

• Bayesian optimization (BO) is a powerful framework for the query-efficient optimization of 
costly-to-evaluate black-box objective functions. Standard BO assumes that all variables in 
a query 𝐱 are controllable by the learner.

• However, in many real-world optimization problems, some of the query variables may be 
subject to randomness affecting their values. 

• In some cases, the randomness affecting a specific variable can be eliminated (by allowing 
the learner to select its value), but at a cost.
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Problem Formulation

• Motivating example: In precision agriculture, consider a farm aiming to find the optimal 
conditions for largest crop yield where the query variables are a set of soil nutrient 
concentrations (e.g., calcium, potassium): 

• The farm may rely on the naturally-occurring quantities of these nutrients in the available soil, but these 
quantities will be randomly sampled;

• alternatively, they may control some subset of these quantities (via manufactured soil and fertilizers) at a 
higher cost. 

• General optimization problem: At each query iteration, the learner is faced with the 
challenges of

• deciding which variables to specify (for more directed learning) vs. which variables to allow to be randomly 
sampled (to reduce incurred costs to avoid exceeding a given budget);

• in addition to the usual optimization problem of deciding the specified variables' values.
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1. Learner chooses control set
2. Learner chooses value of 1st variable
3. Environment randomly samples 2nd and 3rd 

variables
4. Learner pays cost 𝑐1 for choosing the 1st 

control set
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1. Learner chooses control set
2. Learner chooses value of 1st and 2nd  

variables 
3. Environment randomly samples 3rd 

variable 
4. Learner pays cost 𝑐2 for choosing the 2nd  

control set

Available control sets:
• Control set 1: choose 1st variable
• Control set 2: choose 1st and 2nd variables
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• The learner seeks the optimal control set and the optimal partial query associated with 
that control set, defined as

• Every control set 𝑖 has an associated cost 𝑐𝑖. The learner has a limited budget 𝐶, and each 
query in a BO iteration expends 𝑐𝑖  depending on the control set chosen in that iteration.

Optimization Objective
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Algorithm
Idea: use cheap (and likely more random) control sets for exploration and use 

expensive (and likely more deterministic) control sets for exploitation.
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Algorithm
Idea: use cheap (and likely more random) control sets for exploration and use 

expensive (and likely more deterministic) control sets for exploitation.

1. Compute the maximum expected upper confidence bound (UCB) value 𝑔𝑡 across all control sets.
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Algorithm
Idea: use cheap (and likely more random) control sets for exploration and use 

expensive (and likely more deterministic) control sets for exploitation.

1. Compute the maximum expected upper confidence bound (UCB) value 𝑔𝑡 across all control sets.
2. Collect into the set 𝒮1 every control set 𝑖 that, after an 𝜖𝑡 relaxation, attains 𝑔𝑡.
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Algorithm
Idea: use cheap (and likely more random) control sets for exploration and use 

expensive (and likely more deterministic) control sets for exploitation.

1. Compute the maximum expected upper confidence bound (UCB) value 𝑔𝑡 across all control sets.
2. Collect into the set 𝒮1 every control set 𝑖 that, after an 𝜖𝑡 relaxation, attains 𝑔𝑡.
3. Retain only the cheapest control set(s).
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Algorithm
Idea: use cheap (and likely more random) control sets for exploration and use 

expensive (and likely more deterministic) control sets for exploitation.

1. Compute the maximum expected upper confidence bound (UCB) value 𝑔𝑡 across all control sets.
2. Collect into the set 𝒮1 every control set 𝑖 that, after an 𝜖𝑡 relaxation, attains 𝑔𝑡.
3. Retain only the cheapest control set(s).
4. Among the control sets remaining, choose the one that attains the maximum expected UCB value 

and query the maximizing partial query.
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Theoretical Analysis

In the paper, we show:

1. Conditions on the 𝜖-schedule under which UCB-CVS incurs sublinear regret.

2. How the availability of cheaper control sets and the distributions of the uncontrolled 
random variables affect regret.
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Experiments
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Experiments Analysis

Experimental results suggest:
1. UCB-CVS variants outperform TS-PSQ and UCB-PSQ under cheap/moderate costs when 

the full query control set is available.

2. Cost-adaptive UCB-CVS (ETC-Ada) can maintain competitive performance under 
expensive costs.

3. Non-cost-adaptive TS-PSQ and UCB-PSQ perform relatively well when the control sets 
are not subsets of each other.

4. Increasing the variance of the probability distributions has competing effects on the 
simple regret.

5. Simple score-per-cost extensions of TS-PSQ, UCB-PSQ, and EI adapted for BOPSQ that 
simply divide acquisition score of a control set by its cost do not work well.
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Summary

1. Introduce the BOCVS problem;

2. Solve the BOCVS problem by designing a novel UCB-based algorithm with a theoretical 
analysis of its properties;

3. Empirically evaluate the performance of our proposed algorithm against suitable baselines 
under several experimental settings with synthetic and real-world datasets.
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