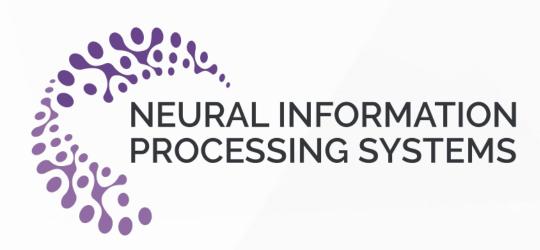
Understanding, Predicting and Better Resolving Q-Value Divergence in Offline-RL

Yang Yue*1Rui Lu*1Bingyi Kang*2Shiji Song1Gao Huang^{†1}1Department of Automation, BNRist, Tsinghua University2ByteDance

NeurIPS 2023 Presenter: Yang Yue

yueyang22f@gmail.com



Background: Offline RL

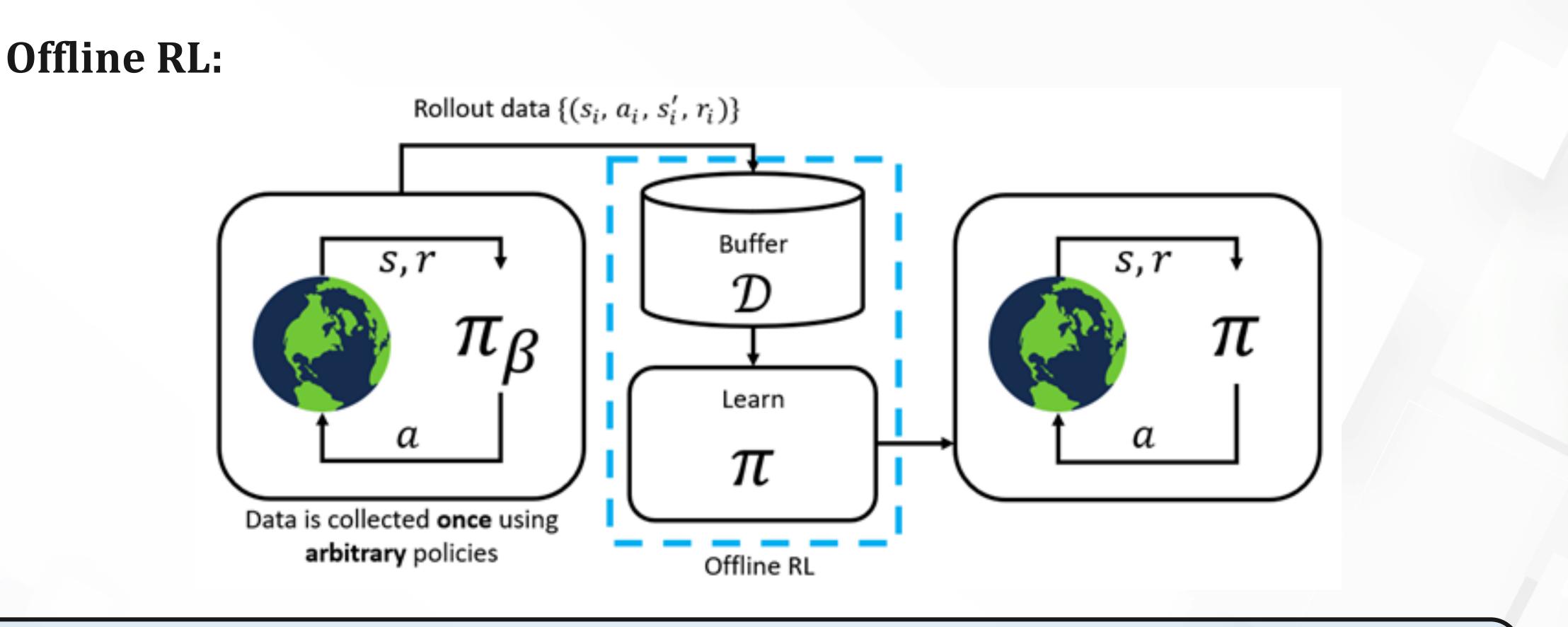


Figure credits to Levine et al., 2020.

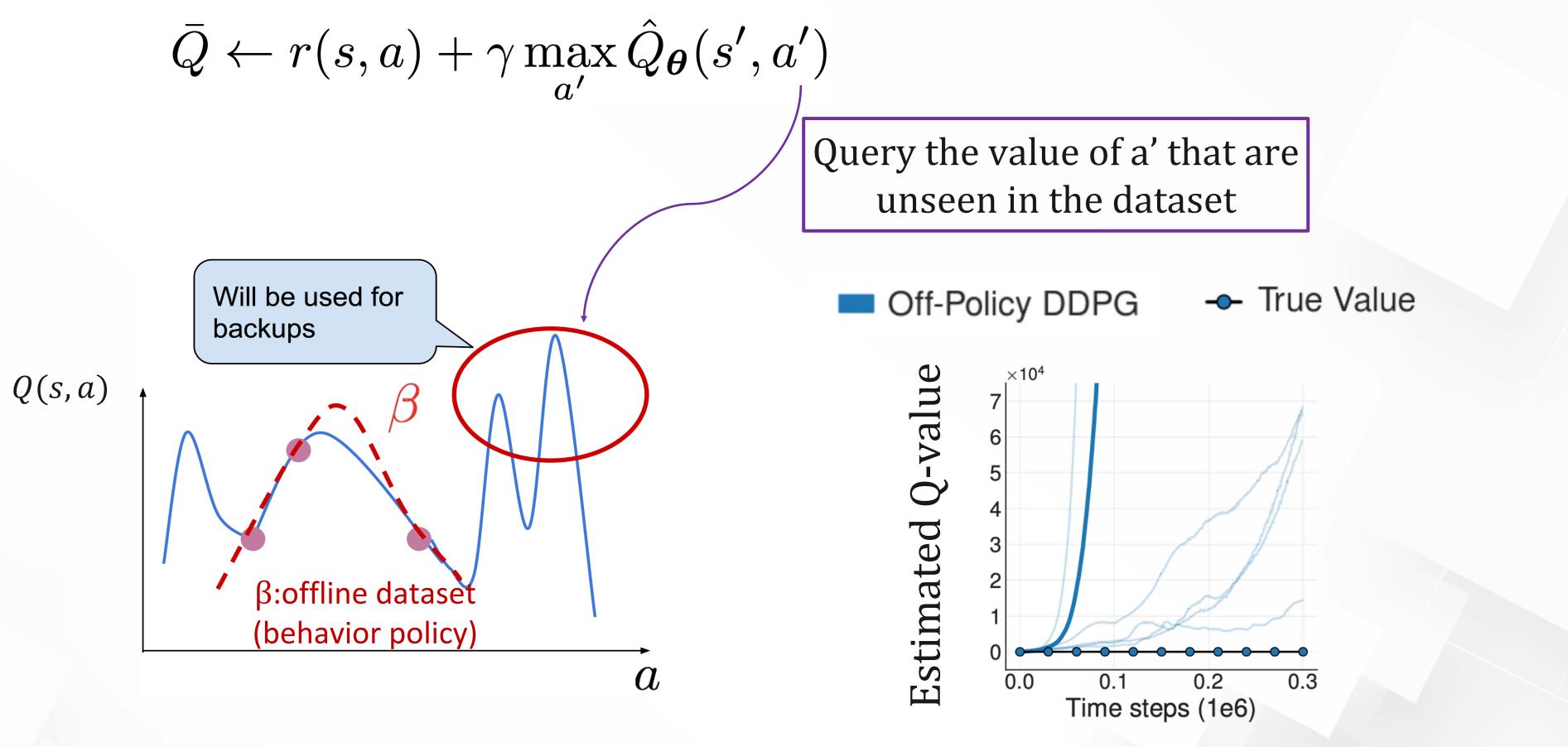
Data is collected once as a dataset. All algorithms are trained offline without collecting data again. (like supervised learning)

Background: Extrapolation Error

Fundamental issue in offline RL:

Distributional shift causes cumulative extrapolation errors

$$\bar{Q} \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}_{\theta}(s)$$



To mitigate extrapolation errors

$$\bar{Q} \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}_{\theta}(s', a)$$

Policy Constraint



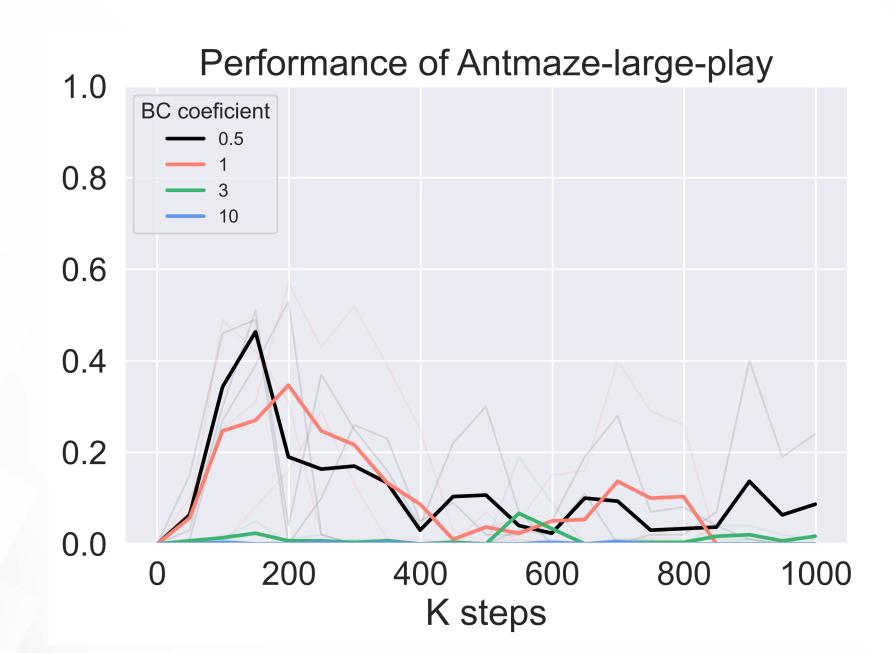
a'-

Query the value of a' that are unseen in the dataset

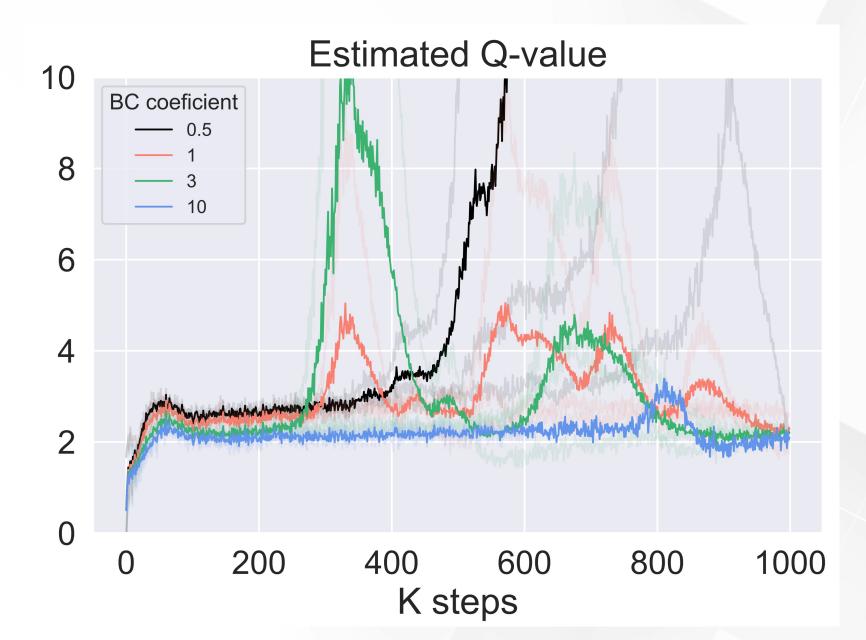
Conservative Q-learning

Policy constrain / conservative Q is effective but introduce detriment bias

manually for each task.



Policy constrain / conservative Q is effective but introduce detriment bias The trade-off between performance and constraint needs to be balanced

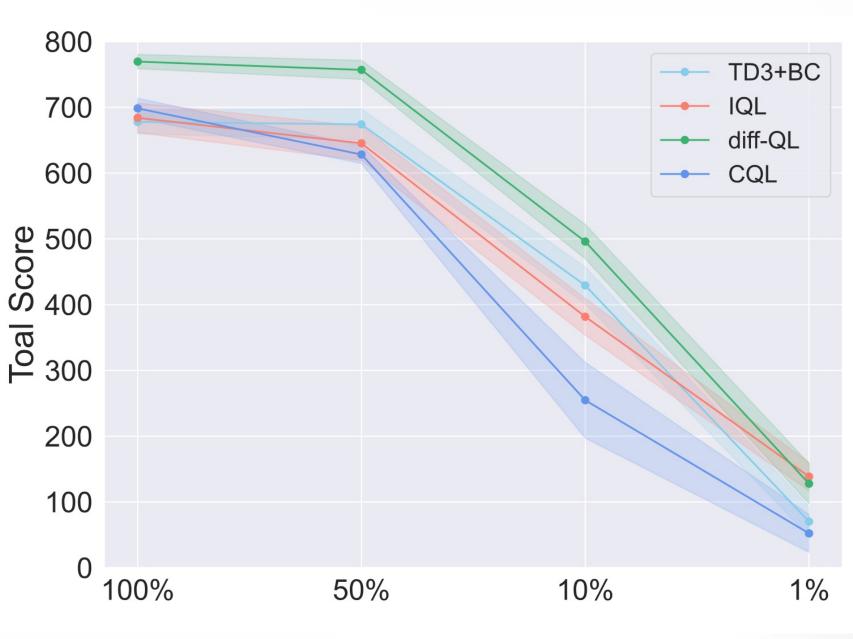


7

manually for each task.

actions are more likely to happen.

The performance of popular offline RL algorithms with the varying X% Mujoco Locomotion dataset



Policy constrain / conservative Q is effective but introduce detriment bias The trade-off between performance and constraint needs to be balanced

Incapable of dealing with divergence in a **data-scarce scenario** where OOD

Motivation

limitations.

How does Q-value divergence actually occur?

How to avoid detrimental bias?

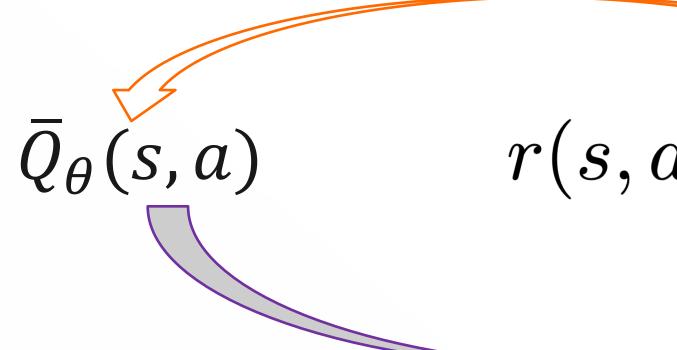
Current methodologies leave several questions unanswered and certain

Self-Excite Eigenvalue Measure

Identify self-excitation cycle

 $\bar{Q} \leftarrow r(s, a) + \gamma \max_{a'} \hat{Q}_{\theta}(s', a')$

Bellman Update: Update θ by gradient descent



Neural Network Generalization: elevate the target Q-value

 $r(s,a) + \gamma \max_{a'} \hat{Q}_{\theta}(s',a')$

Self-Excite Eigenvalue Measure

- three parts
 - Understanding Q-value divergence
 - Predicting Q-value divergence
 - Better resolving Q-value divergence

We develop theoretical tools with **Neural Tangent Kernel (NTK)** to enable

11

Understanding Q-value Divergence

$$\boldsymbol{A}_t = (\gamma \phi_{\boldsymbol{\theta}_t}(\boldsymbol{X}_t^*) - \phi_{\boldsymbol{\theta}_t}(\boldsymbol{X}))^\top \phi_{\boldsymbol{\theta}_t}(\boldsymbol{X}) = \gamma \boldsymbol{G}_{\boldsymbol{\theta}_t}(\boldsymbol{X}_t^*, \boldsymbol{X}) - \boldsymbol{G}_{\boldsymbol{\theta}_t}(\boldsymbol{X}, \boldsymbol{X})$$

X is (*s*, *a*) points in the dataset X_t^* is $(s', \pi_{\theta_t}(s'))$ points, potentially OOD $G_{\theta_{t}}(X, X') = \phi_{\theta}(X)^{T} \phi_{\theta}(X')$ is the NTK matrix depicting the strength of the bond between X and X' due to generalization, where $\phi_{\theta}(X) := \nabla_{\theta} Q_{\theta}(X)$ γ is discount factor

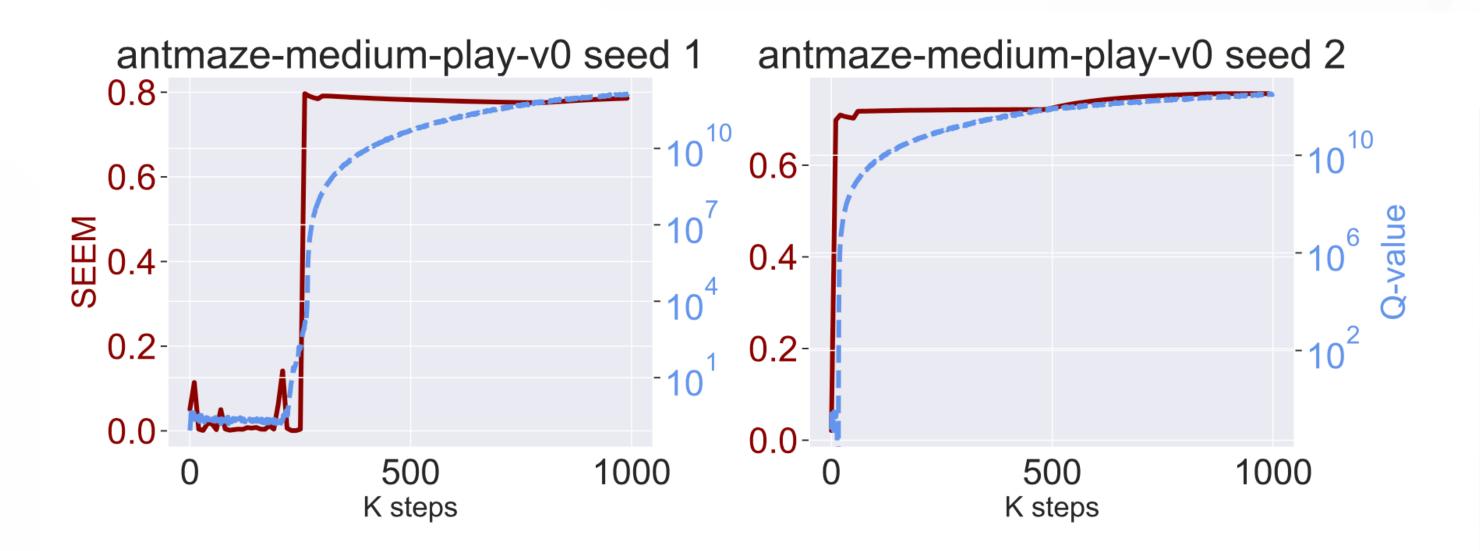
Intuition: when the generalization bond between dataset points and OOD points is excessively strong, the divergence happens.

(Theorem 1 and 3 in our paper) Q-value divergence happens when the maximal eigenvalue of the following matrix A_t (namely SEEM) is greater to 0:

Predicting Q-value Divergence

We can monitor SEEM value to know whether the training will diverge. **D** The divergence indication property of SEEM:

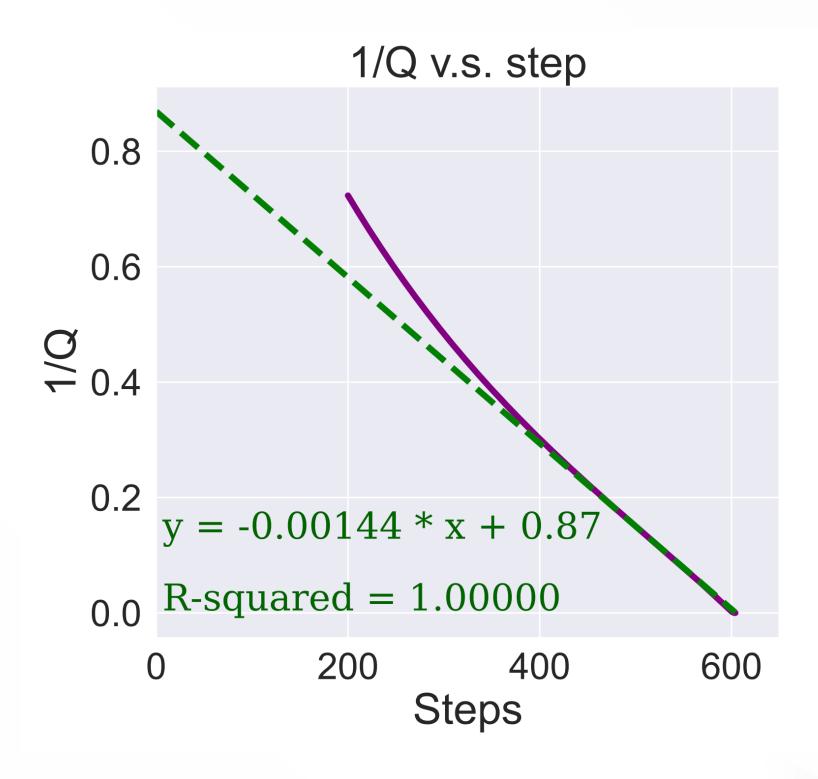
> the prediction Q-value is stable until the normalized kernel *matrix's SEEM* rises up to a large positive value

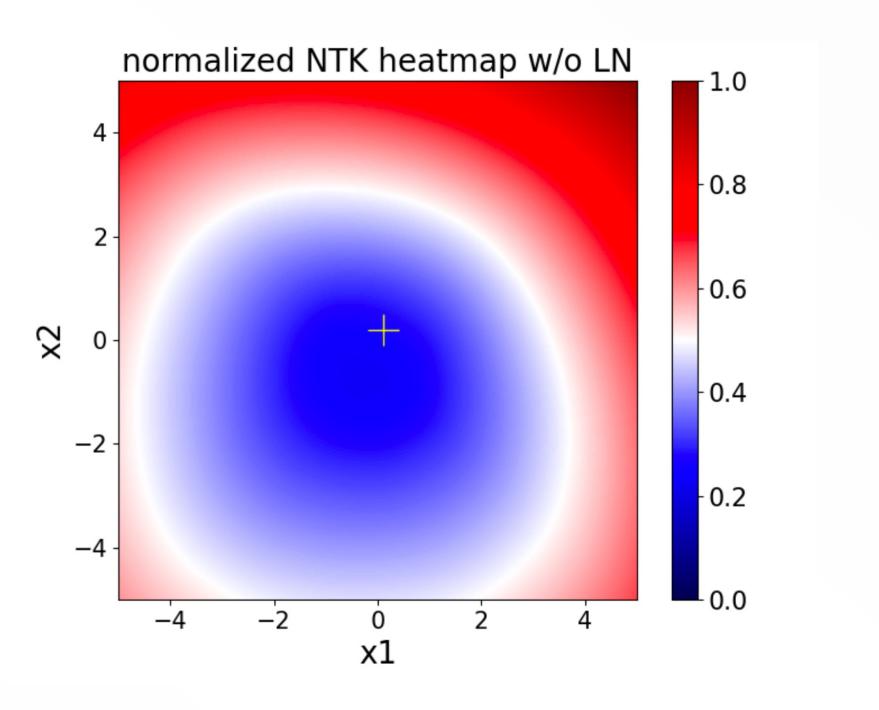


Predicting Q-value Divergence

SEEM is able to predict the order of the growth for the estimated Q-value: With SGD optimizer (Theorem 4): The inverse of Q-value decreases linearly

along the timestep.



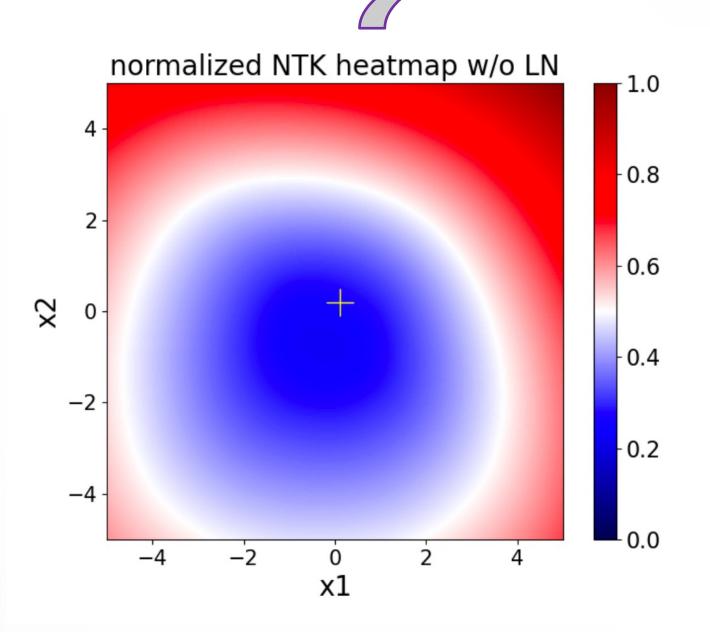


This indicates an intriguing approach to avoid divergence: regularizing the model's generalization on out-of-distribution predictions.

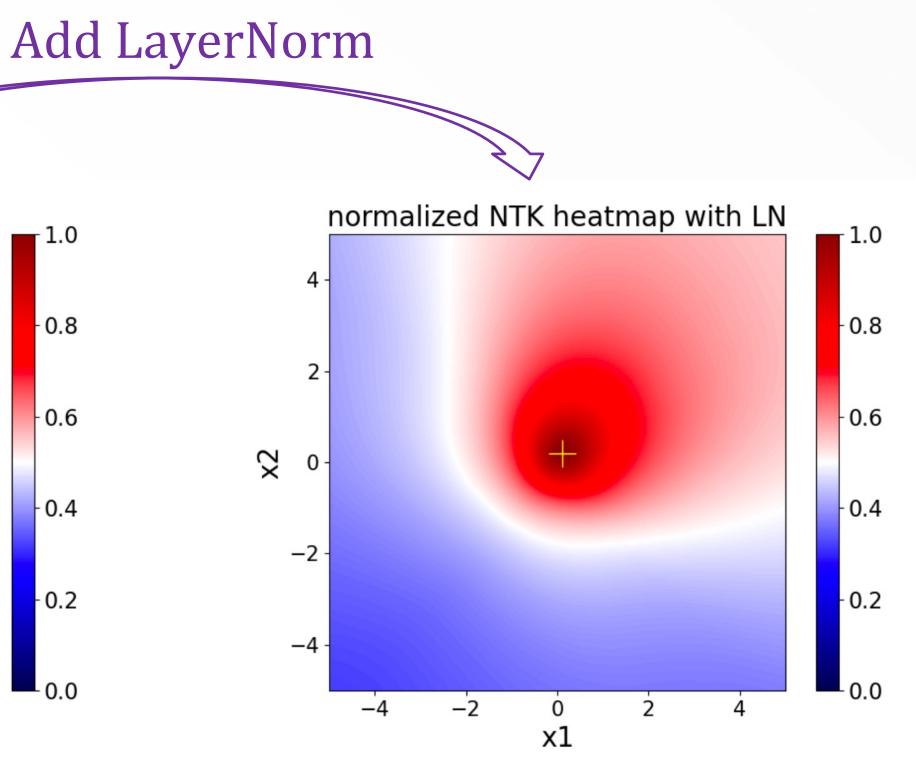
The abnormal generalization of MLP network: When updating the value of the point x_0 with cross mark, values of points far way x_0 changes more dramatically than near ones.

17

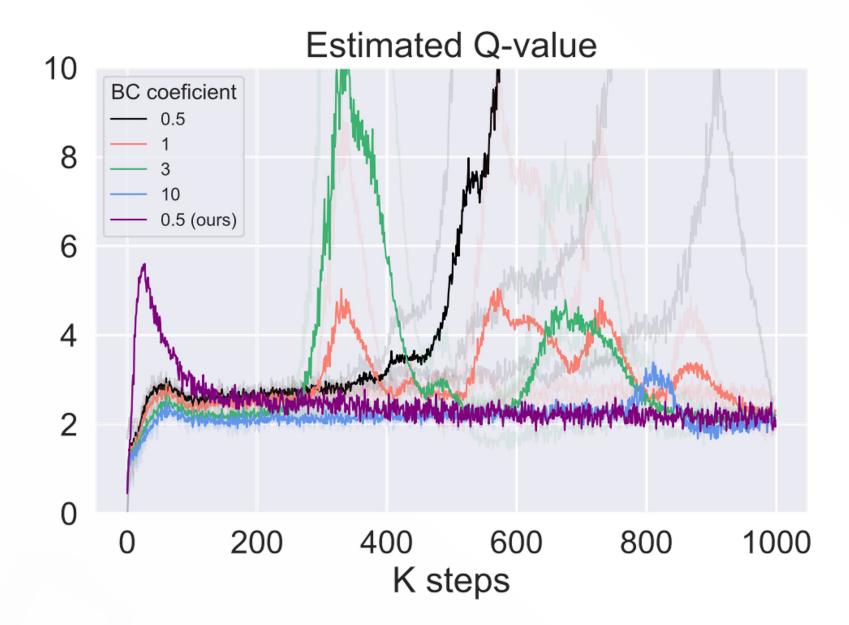
- - Proposition 1 and 2)

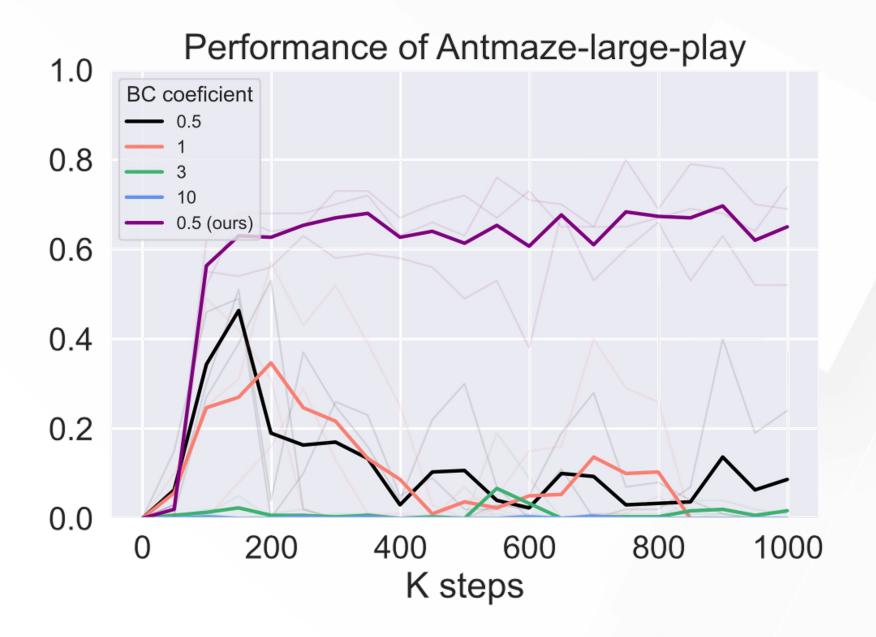


In How to regularize the model's generalization on out-of-distribution predictions Simple Layer Normalization (we theoretically prove LayerNorm bounds SEEM in



Avoid detrimental bias mentioned before

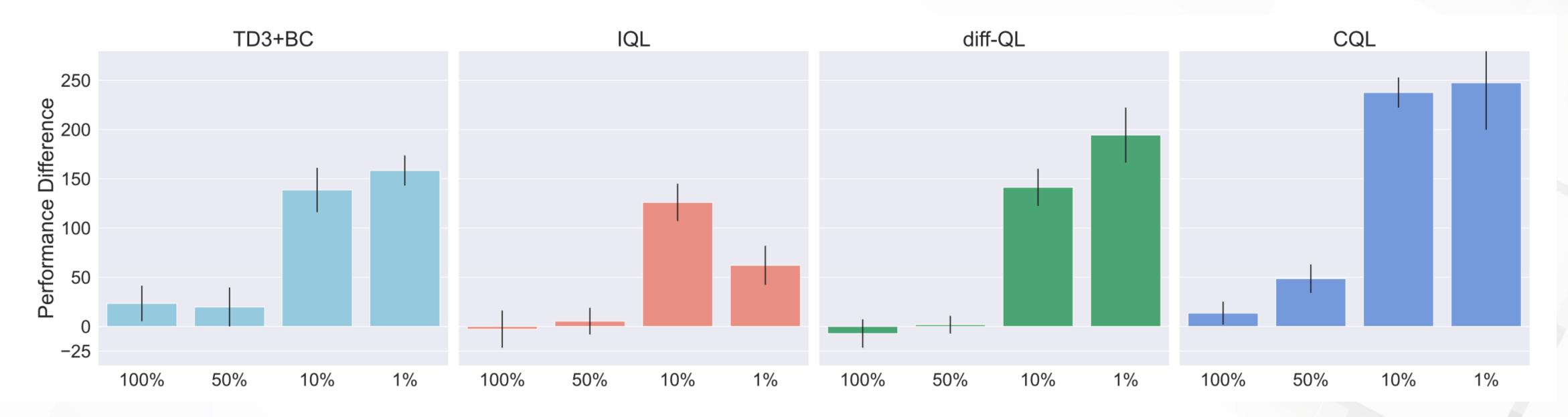




Achieve SOTA results on challenging Antmaze benchmark

Dataset	TD3+BC	IQL	MSG	sfBC	diff-QL	ours
antmaze-umaze-v0	40.2	87.5	98.6	93.3	95.6 (96.0)	94.3 ± 0.5 (97.0)
antmaze-umaze-diverse-v0	58.0	62.2	76.7	86.7	69.5 (84.0)	$88.5 \pm 6.1 (95.0)$
antmaze-medium-play-v0	0.2	71.2	83.0	88.3	0.0 (79.8)	85.6 ± 1.7 (92.0)
antmaze-medium-diverse-v0	0.0	70.0	83.0	90.0	6.4 (82.0)	83.9 ± 1.6 (90.7)
antmaze-large-play-v0	0.0	39.6	46.8	63.3	1.6 (49.0)	65.4 ± 8.6 (74.0)
antmaze-large-diverse-v0	0.0	47.5	58.2	41.7	4.4 (61.7)	67.1 ± 1.8 (75.7)
average	16.4	63.0	74.4	77.2	29.6 (75.4)	80.8 (87.4)

D Effectiveness in data-scarce scenarios



The performance difference between baseline with LayerNorm and without it using the same X% dataset.

Take-home Message

- **Q**-value divergence arises from the improper neural network generalization.
- SEEM is a framework to accurately depict and predict how improper generalization causes the divergence with NTK tool.
- Regularizing abnormal generalization by LayerNorm
 Avoid detrimental bias and achieve SOTA
 Enable algorithms in data-scarce scenarios

