Tempo Adaptation in Non-stationary Reinforcement Learning

Hyunin Lee ¹ Yuhao Ding ¹ Jongmin Lee ¹ Ming Jin² Javad Lavaei¹ Somayeh Sojoudi¹

¹UC Berkeley ²Virginia Tech

Hyunin Lee (UCB)

イロト 不得 トイヨト イヨト

Overlooked issue: Time synchronization

Figure 1: Conventional Non-stationary RL environment

- Key observation: In reality, environmental changes occur over wall-clock time (t) rather than episode progress (k).
- Existing works: episode $k \rightarrow$ collect data & train policy \rightarrow episode k + 1.
- In reality: time $\mathfrak{t}_k \to \text{spend } \Delta \mathfrak{t}$ for collecting data & training $\to \text{time}$ $\mathfrak{t}_{k+1} = \mathfrak{t}_k + \Delta \mathfrak{t}.$

イロト 不得 トイヨト イヨト

Remove time synchronization

Figure 2: Different training time makes agent encounters different environment

- In time-desynchorzied environment, the agent should choose when to interact (t₁, t₂, ..., t_K) additional to how many times to interact (K)
- The choice of *interaction times* ($\mathfrak{t}_1, \mathfrak{t}_2, ..., \mathfrak{t}_K$) significantly impacts the suboptimality gap of the policy.

イロト イボト イヨト イヨト

Contribution

- We propose a Proactively Synchronizing Tempo (ProST) framework that computes suboptimal {t₁, t₂, ..., t_K}(= {t}_{1:K}).
- ProST framwork computes suboptimal {t}_{1:K} by minimizing the upper bound of its performance metric, dynamic regret.
- One interesting property is that we show suboptimal $\{t\}_{1:K}$ strikes a balance between the policy training time (agent tempo) and how fast the environment changes (environment tempo).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ProsT framework

For given $\mathfrak{t} \in [0, T]$, ProST framework computes \mathcal{K}^* , $\{\mathfrak{t}_1^*, \mathfrak{t}_2^*, .., \mathfrak{t}_{\mathcal{K}^*}^*\}$, then $\{\pi_{\mathfrak{t}_1^*}, \pi_{\mathfrak{t}_2^*}, .., \pi_{\mathfrak{t}_{\mathcal{K}^*}^*}\}$ into two components

- Time optimizer
- Future policy optimizer

Figure 3: ProST framework

э

イロト イヨト イヨト イヨト

Future policy optimizer

For given t_k , t_{k+1} , it computes a near-optimal policy of t_{k+1} at time t_k

Definition (MDP forecaster $g \circ f$)

Consider two function classes \mathcal{F} and \mathcal{G} such that $\mathcal{F}: \mathcal{O}^w \to \mathcal{O}$ and $\mathcal{G}: \mathcal{S} \times \mathcal{A} \times \mathcal{O} \to \mathbb{R} \times \Delta(\mathcal{S})$, where $w \in \mathbb{N}$. Then, for $f_{(k)} \in \mathcal{F}$ and $g_{(k)} \in \mathcal{G}$, we define MDP forecaster at time t_k as $(g \circ f)_{(k)}: \mathcal{O}^w \times \mathcal{S} \times \mathcal{A} \to \mathbb{R} \times \Delta(\mathcal{S})$.

Estimate the future MDP model and optimize.

• At $\mathfrak{t} = \mathfrak{t}_k$

• During
$$\mathbf{t} \in (\mathbf{t}_k, \mathbf{t}_{k+1})$$

• $\hat{o}_{(k+1)} = f_{(k)}(\{\tilde{o}\}_{(k-w+1,k)})$
• $(\widehat{R}_{(k+1)}(s, a), \widehat{P}_{(k+1)}(\cdot|s, a)) = g_{(k)}(s, a, \hat{o}_{k+1})$
• $\widehat{\pi}_{(k+1)} \leftarrow \widehat{\mathcal{M}}_{(k+1)} = \langle S, \mathcal{A}, H, \widehat{P}_{(k+1)}, \widehat{R}_{(k+1)}, \gamma \rangle$

• At
$$\mathfrak{t} = \mathfrak{t}_{k+1}$$

イロト 不得 トイヨト イヨト 二日

Time optimizer

Strategy: Δ^*_π is a minimizer of the dynamic regret's upper bound

• Analysis on finite space $|\mathcal{S}|, |\mathcal{A}| < \infty \rightarrow \text{ProST-T}$

Theorem (ProST-T dynamic regret \Re)

Let $\iota_{H}^{K} = \sum_{k=1}^{K-1} \sum_{h=0}^{H-1} \iota_{h}^{(k+1)}(s_{h}^{(k+1)}, a_{h}^{(k+1)})$ and $\bar{\iota}_{\infty}^{K} \coloneqq \sum_{k=1}^{K-1} ||\bar{\iota}_{\infty}^{k+1}||_{\infty}$, where ι_{H}^{K} is a data-dependent error. For a given $p \in (0, 1)$, the dynamic regret of the forecasted policies $\{\widehat{\pi}^{(k+1)}\}_{1:K-1}$ of *ProST-T* is upper bounded with probability at least 1 - p/2 as follows:

$$\mathfrak{R}\left(\{\widehat{\pi}^{(k+1)}\}_{1:K-1},K\right)\right) \leq \mathfrak{R}_{I} + \mathfrak{R}_{II}$$

where $\mathfrak{R}_{I} = \overline{\iota}_{\infty}^{K}/(1-\gamma) - \iota_{H}^{K} + C_{p} \cdot \sqrt{K-1}$, $\mathfrak{R}_{II} = C_{II}[\Delta_{\pi}] \cdot (K-1)$, and $C_{p}, C_{II}[\Delta_{\pi}]$ are some functions of p, Δ_{π} , respectively.

- $\mathfrak{R}_{I} \leftarrow$ Forecasting model error $\leftarrow B(\Delta_{\pi})$ (rate of environment's change)
- $\mathfrak{R}_{II} \leftarrow$ Policy optimization error $\leftarrow \Delta_{\pi}$ (rate of agent's adaption)
- Δ_{π} strikes a balance between \mathfrak{R}_{I} and \mathfrak{R}_{II}

(日)

Δ_{π} bounds for sublinear \mathfrak{R}_{II}

 Δ^*_π should satisfy sublinear dynamic regret to K

- δ : approximation gap
- τ : entropy regularization parameter
- η : learning rate

Proposition (Δ_{π} bounds for sublinear \mathfrak{R}_{II})

A total step H is given by MDP. For a number $\epsilon > 0$ such that $H = \Omega \left(\log \left((\widehat{r}_{max} \lor r_{max}) / \epsilon \right) \right)$, we choose δ, τ, η to satisfy $\delta = \mathcal{O} \left(\epsilon \right), \ \tau = \Omega \left(\epsilon / \log |\mathcal{A}| \right) \text{ and } \eta \leq (1 - \gamma) / \tau$, where \widehat{r}_{max} and r_{max} are the maximum reward of the forecasted model and the maximum reward of the environment, respectively. Define $\mathbb{N}_{H} := \{n \mid n > \frac{1}{\eta\tau} \log \left(\frac{C_{1}(\gamma+2)}{\epsilon} \right), n \in \mathbb{N} \}$, where C_{1} is a constant. Then $\mathfrak{R}_{H} \leq 4\epsilon(K-1)$ for all $\Delta_{\pi} \in \mathbb{N}_{H}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathfrak{R}_{I} \leftarrow \text{Forecasting model error} \leftarrow B(\Delta_{\pi})$

SW-LSE : Sliding window regularized LSE

Theorem (Dynamic regret \mathfrak{R}_{l} when f = SW-LSE)

For given $p \in (0,1)$, if the exploration bonus constant β and regularization parameter λ satisfy $\beta = \Omega(|S|H\sqrt{\log(H/p)}), \lambda \ge 1$, then the \Re_I is bounded with probability 1 - p,

$$\mathfrak{R}_{l} \leq C_{l} [B(\Delta_{\pi})] \cdot w + C_{k} \cdot \sqrt{\frac{1}{w} \log \left(1 + \frac{H}{\lambda}w\right)}$$

where $C_{I}[B(\Delta_{\pi})] = (1/(1-\gamma) + H) \cdot B_{r}(\Delta_{\pi}) + (1 + H\hat{r}_{max})\gamma/(1-\gamma) \cdot B_{p}(\Delta_{\pi})$, and C_{k} is a constant on the order of $\mathcal{O}(K)$.

イロト 不得 トイヨト イヨト 二日

Δ_{π} bounds for sublinear \mathfrak{R}_{l}

Proposition (Δ_{π} bounds for sublinear \mathfrak{R}_{I})

Denote B(1) as the environment tempo when $\Delta_{\pi} = 1$, which is a summation over all time steps. Assume that the environment satisfies $B_r(1) + B_p(1)\hat{r}_{max}/(1-\gamma) = o(K)$ and we choose $w = \mathcal{O}((K-1)^{2/3}/(C_l[B(\Delta_{\pi})])^{2/3})$. Define the set \mathbb{N}_l to be $\{n \mid n < K, n \in \mathbb{N}\}$. Then \mathfrak{R}_l is upper-bounded as $\mathfrak{R}_l = \mathcal{O}\left(C_l[B(\Delta_{\pi})]^{1/3}(K-1)^{2/3}\sqrt{\log((K-1)/C_l[B(\Delta_{\pi})])}\right)$ and also satisfies a sublinear upper bound, provided that $\Delta_{\pi} \in \mathbb{N}_l$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Δ^*_{π} strikes a balance between \mathfrak{R}_l and \mathfrak{R}_{ll}

- \mathfrak{R}_I upperbound is increasing on a interval $\mathbb{N}_I \cap \mathbb{N}_{II}$
- \mathfrak{R}_{II} upperbound is decreasing on a interval $\mathbb{N}_{I} \cap \mathbb{N}_{II}$

Theorem (Suboptimal tempo Δ^*_{π})

Let $k_{Env} = (\alpha_r \vee \alpha_p)^2 C_I[B(1)]$, $k_{Agent} = \log (1/(1 - \eta \tau))C_1(K - 1)(\gamma + 2)$. Consider three cases: case1: $\alpha_r \vee \alpha_p = 0$, case2: $\alpha_r \vee \alpha_p = 1$, case3: $0 < \alpha_r \vee \alpha_p < 1$ or $\alpha_r \vee \alpha_p > 1$. Then Δ_{π}^* depends on the environment's drifting constants as follows:

• Case2:
$$\Delta_{\pi}^* = \log_{1-\eta\gamma} \left(k_{Env} / k_{Agent} \right) + 1.$$

• Case3: $\Delta_{\pi}^* = \exp\left(-W\left[-\frac{\log(1-\eta\tau)}{\max(\alpha_r,\alpha_p)-1}\right]\right)$, provided that the parameters are chosen so that $k_{Agent} = (1-\eta\tau)k_{Env}$.

(日) (四) (注) (注) (正)

Performance

Benchmark methods

- MBPO : state of the art model-based policy optimization.
- Pro-OLS : policy optimization algorithm that predicts future V.
- ONPG : adaptive algorithm that fine-tunes the policy on current data.
- FTRL : adaptive algorithm that maximizes the performance on all previous data.

Speed	B(G)	Swimmer-v2					Halfcheetah-v2					Hopper-v2				
		Pro-OLS	ONPG	FTML	MBPO	ProST-G	Pro-OLS	ONPG	FTML	MBPO	ProST-G	Pro-OLS	ONPG	FTML	MBPO	ProST-G
1	16.14	-0.40	-0.26	-0.08	-0.08	0.57	-83.79	-85.33	-85.17	-24.89	-19.69	98.38	95.39	97.18	92.88	92.77
2	32.15	0.20	-0.12	0.14	-0.01	1.04	-83.79	-85.63	-86.46	-22.19	-20.21	98.78	97.34	99.02	96.55	98.13
3	47.86	-0.13	0.05	-0.15	-0.64	1.52	-83.27	-85.97	-86.26	-21.65	-21.04	97.70	98.18	98.60	95.08	100.42
4	63.14	-0.22	-0.09	-0.11	-0.04	2.01	-82.92	-84.37	-85.11	-21.40	-19.55	98.89	97.43	97.94	97.86	100.68
5	77.88	-0.23	-0.42	-0.27	0.10	2.81	-84.73	-85.42	-87.02	-20.50	-20.52	97.63	99.64	99.40	96.86	102.48
A	8.34	1.46	2.10	2.37	-0.08	0.57	-76.67	-85.38	-83.83	-40.67	83.74	104.72	118.97	115.21	100.29	111.36
В	4.68	1.79	-0.72	-1.20	0.19	0.20	-80.46	-86.96	-85.59	-29.28	76.56	80.83	131.23	110.09	100.29	127.74

Table 1: Average reward returns

*Whole training procedure is in Appendix

イロト 不得 トイヨト イヨト

Ablation study

Figure 4: (a) Optimal Δ_{π}^* . (b-1) Different forecaster *f* (ARIMA, SA). (b-2) The Mean squared Error (MSE) model loss of four ProST-G with different forecasters(ARIMA and three SA) and the MBPO. *x*-axis are all episodes.

イロト イヨト イヨト イヨト