Joint processing of linguistic properties in brains and language models

Subba Reddy Oota Manish Gupta Mariya Toneva

- Microsoft


## Language models (LMs) predict brain activity evoked by complex language (e.g. listening a story) to an impressive degree

Language model


Brain alignment of a $\mathrm{LM} \Rightarrow$ how similar its representations are to a human brain's

Language models (LMs) predict brain activity evoked by complex language (e.g. listening a story) to an impressive degree


Brain alignment of a $\mathrm{LM} \Rightarrow$ Why do language models have better brain alignment? What are the reasons?

Language models (LMs) are trained to predict missing words
jumps


## Language models (LMs) are trained to predict missing words

Surface
Syntactic
Semantic

| Layer | SentLen <br> (Surface) | WC <br> (Surface) | TreeDepth <br> (Syntactic) | TopConst <br> (Syntactic) | BShift <br> (Syntactic) | Tense <br> (Semantic) | SubjNum <br> (Semantic) | ObjNum <br> (Semantic) | SOMO <br> (Semantic) | CoordInv <br> (Semantic) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $93.9(2.0)$ | $24.9(24.8)$ | $35.9(6.1)$ | $63.6(9.0)$ | $50.3(0.3)$ | $82.2(18.4)$ | $77.6(10.2)$ | $76.7(26.3)$ | $49.9(-0.1)$ | $53.9(3.9)$ |
| 2 | $95.9(3.4)$ | $65.0(64.8)$ | $40.6(11.3)$ | $71.3(16.1)$ | $55.8(5.8)$ | $85.9(23.5)$ | $82.5(15.3)$ | $80.6(17.1)$ | $53.8(4.4)$ | $58.5(8.5)$ |
| 3 | $\mathbf{9 6 . 2 ( 3 . 9 )}$ | $66.5(66.0)$ | $39.7(10.4)$ | $71.5(18.5)$ | $64.9(14.9)$ | $86.6(23.8)$ | $82.0(14.6)$ | $80.3(16.6)$ | $55.8(5.9)$ | $59.3(9.3)$ |
| 4 | $94.2(2.3)$ | $\mathbf{6 9 . 8 ( 6 9 . 6 )}$ | $39.4(10.8)$ | $71.3(18.3)$ | $74.4(24.5)$ | $87.6(25.2)$ | $81.9(15.0)$ | $81.4(19.1)$ | $59.0(8.5)$ | $58.1(8.1)$ |
| 5 | $92.0(0.5)$ | $69.2(69.0)$ | $40.6(11.8)$ | $81.3(30.8)$ | $81.4(31.4)$ | $89.5(26.7)$ | $85.8(19.4)$ | $81.2(18.6)$ | $60.2(10.3)$ | $64.1(14.1)$ |
| 6 | $88.4(-3.0)$ | $63.5(63.4)$ | $\mathbf{4 1 . 3 ( 1 3 . 0 )}$ | $83.3(36.6)$ | $82.9(32.9)$ | $89.8(27.6)$ | $\mathbf{8 8 . 1 ( 2 1 . 9 )}$ | $82.0(20.1)$ | $60.7(10.2)$ | $71.1(21.2)$ |
| 7 | $83.7(-7.7)$ | $56.9(56.7)$ | $40.1(12.0)$ | $\mathbf{8 4 . 1}(\mathbf{3 9 . 5 )}$ | $83.0(32.9)$ | $89.9(27.5)$ | $87.4(22.2)$ | $\mathbf{8 2 . 2 ( 2 1 . 1 )}$ | $61.6(11.7)$ | $74.8(24.9)$ |
| 8 | $82.9(-8.1)$ | $51.1(51.0)$ | $39.2(10.3)$ | $84.0(39.5)$ | $83.9(33.9)$ | $89.9(27.6)$ | $87.5(22.2)$ | $81.2(19.7)$ | $62.1(12.2)$ | $76.4(26.4)$ |
| 9 | $80.1(-11.1)$ | $47.9(47.8)$ | $38.5(10.8)$ | $83.1(39.8)$ | $\mathbf{8 7 . 0 ( 3 7 . 1 )}$ | $90.0(\mathbf{2 8 . 0 )}$ | $87.6(22.9)$ | $81.8(20.5)$ | $63.4(13.4)$ | $\mathbf{7 8 . 7}(\mathbf{2 8 . 9})$ |
| 10 | $77.0(-14.0)$ | $43.4(43.2)$ | $38.1(9.9)$ | $81.7(39.8)$ | $86.7(36.7)$ | $89.7(27.6)$ | $87.1(22.6)$ | $80.5(19.9)$ | $63.3(12.7)$ | $78.4(28.1)$ |
| 11 | $73.9(-17.0)$ | $42.8(42.7)$ | $36.3(7.9)$ | $80.3(39.1)$ | $86.8(36.8)$ | $89.9(27.8)$ | $85.7(21.9)$ | $78.9(18.6)$ | $64.4(14.5)$ | $77.6(27.9)$ |
| 12 | $69.5(-21.4)$ | $49.1(49.0)$ | $34.7(6.9)$ | $76.5(37.2)$ | $86.4(36.4)$ | $89.5(27.7)$ | $84.0(20.2)$ | $78.7(18.4)$ | $\mathbf{6 5 . 2 ( \mathbf { 1 5 . 3 } )}$ | $74.9(25.4)$ |

BERT composes a hierarchy of linguistic signals ranging from surface to semantic features.

## The strongest alignment with high-level language brain regions has consistently been observed in middle layers



Caucheteux et al. 2022


Across several types of large NLP systems, best alignment with fMRI in middle layers

## What are the reasons for this observed brain alignment?

Investigate via a perturbation approach


Does the removal of a linguistic property affects the alignment between language model and the brain across all layers?

## Result-1



Removal of each linguistic property leads to a significant decrease in brain alignment on average across layers.

## Result-1



Removal of each linguistic property leads to a significant decrease in brain alignment on average across layers.


Greatest impact on brain alignment in the middle layers

## Result-1



Which linguistic properties have the most influence on the trend of brain alignment across BERT layers?

## Greatest impact on brain alignment in the middle layers

## Result-2

Corr $_{\text {task }}\left(\Delta\right.$ probing accuracy $_{\text {task }}, \Delta$ brain alignment $\left._{\text {task }}\right)$

| Tasks | AG | ATL | PTL | IFG | IFGOrb | MFG | PCC | dmPFC | Whole Brain |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Word Length | 0.261 | 0.264 | 0.220 | 0.355 | 0.129 | 0.319 | 0.143 | 0.100 | 0.216 |
| Syntactic | TreeDepth | 0.365 | $\mathbf{0 . 4 2 1}$ | $\mathbf{0 . 4 5 8}$ | $\mathbf{0 . 4 4 2}$ | 0.257 | $\mathbf{0 . 4 3 6}$ | 0.109 | 0.027 | $\mathbf{0 . 4 4 3}$ |
|  | TopConstituents | $\mathbf{0 . 4 8 9}$ | $\mathbf{0 . 4 2 1}$ | $\mathbf{0 . 4 6 4}$ | $\mathbf{0 . 5 1 6}$ | $\mathbf{0 . 4 5 3}$ | $\mathbf{0 . 4 6 3}$ | $\mathbf{0 . 4 5 9}$ | $\mathbf{0 . 4 6 3}$ | $\mathbf{0 . 4 5 1}$ |
|  | Tense | 0.226 | 0.283 | 0.307 | 0.325 | 0.345 | 0.339 | $\mathbf{0 . 4 3 5}$ | 0.122 | 0.248 |
|  | Subject Number | 0.124 | 0.201 | 0.231 | 0.239 | 0.285 | 0.228 | 0.348 | 0.237 | 0.254 |
|  | Semantic | Object Number | 0.306 | $\mathbf{0 . 3 9 2}$ | 0.342 | 0.313 | $\mathbf{0 . 5 0 3}$ | 0.335 | 0.328 | 0.001 |
|  | 0.263 |  |  |  |  |  |  |  |  |  |

ROI-Level Analysis

Syntactic properties have the largest effect on the trend of brain alignment across model layers

## Qualitative Analysis: Effect of each linguistic property



TopConstituent property is more localized to the canonical language regions in the left hemisphere and is more distributed in the right hemisphere.

## Conclusions for neuro-Al research field

## 1. Al-engineering:

- guide linguistic feature selection,
- facilitate improved transfer learning,
- help in the development of cognitively plausible AI architectures


## 2. Computational modeling in Neuroscience

- enables cognitive neuroscientists to have more control over using language models as model organisms of language processing


## 3. Model interpretability

- the addition of linguistic features by our approach can further increase the model interpretability using brain signals (Toneva \& Wehbe 2019)

Joint Processing of linguistic properties in brains and language models (NeurIPS 2023)


Bridging AI and Neuroscience (BrAIN) group


MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS
\#Microsoft


