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Cheap but accurate model of 𝑬𝑬𝑷𝑷

Ensemble Learning: 
Reduce estimation uncertainty
increase estimation robustness
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De-black box:
Explicit Error: error element that is efficient to calculate and differentiable
Implicit Error: error element that is (1) time-consuming to calculate or (2) indifferentiable

Hybrid Surrogate Error Model
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Experimental setting 
 Three engineering problem: Turbofan Design, 2. Electro-mechanical Actuator Design, 3, Pulse-width Modulation of 

13-level Inverters
 Configuration: 100 independent test cases per problem, the allowed query times to physical evaluation 𝐸𝐸𝑃𝑃 is 1000.
Metrics: 
Failure times: total failure times in 100 cases
Query times: the average query times needed for correcting state.
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 propose a novel approach, GEESE, to correct wrong state estimation through 
optimization, aiming at delivering both low error and high efficiency. 

 a hybrid surrogate error model to provide fast error estimations to reduce simulation 
cost and to enable gradient based backpropagation of error feedback.

 two generative models to approximate the probability distributions of the candidate 
states for simulating the exploitation and exploration behaviors.

 GEESE is tested on three real-world SAE inverse problems. Results show that it fails the 
least number of times in terms of finding a feasible state correction, and requires 
physical evaluations less frequently in general.

Future work: how to correct high-dimension state estimation? 
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