

NeurIPS 2023

Physics-Driven ML-Based Modelling for Correcting Inverse Estimation

Ruiyuan Kang¹, Tingting Mu², Panos Liatsis³, Dimitrios Kyritsis³

 Bayanat AI, Abu Dhabi, UAE
University of Manchester, Manchester, UK
Khalifa University, Abu Dhabi, UAE Paper Link: https://arxiv.org/abs/2309.13985

Motivation

Science and Engineering Problem

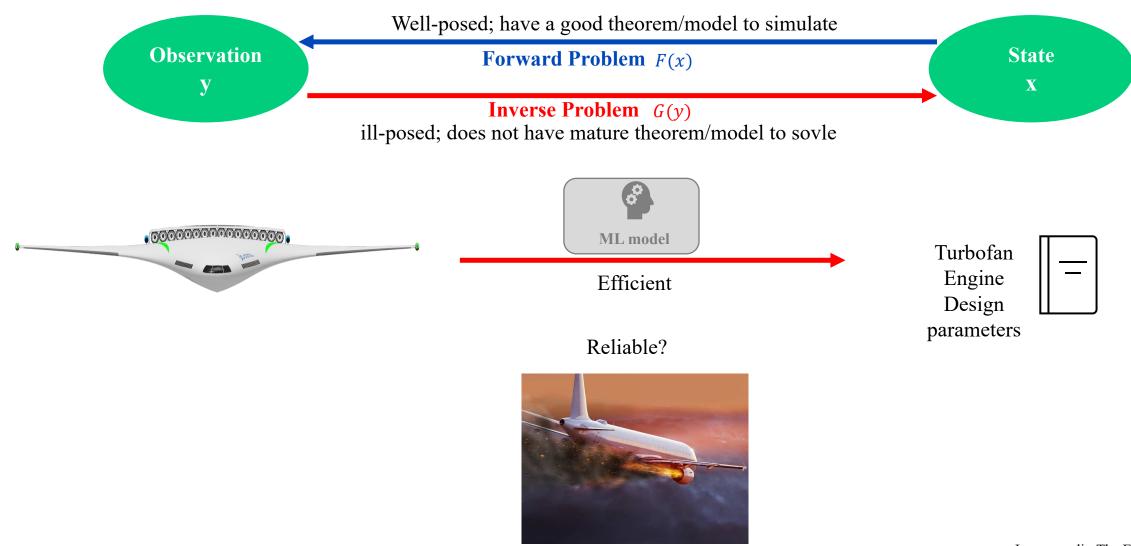
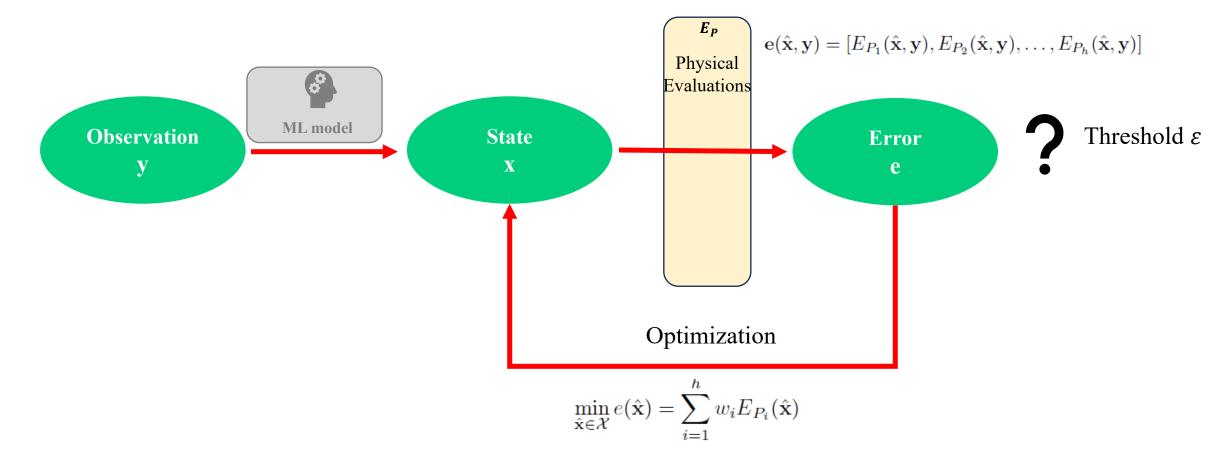


Image credit: The Economic Times

Balance Efficiency and Reliability



Optimization Problem:

- 1. find a feasible state \widehat{x}
- 2. by querying the physical evaluations as less times as possible

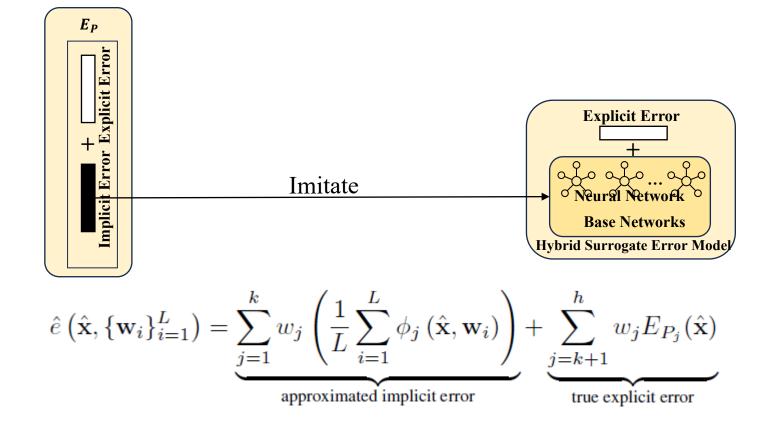
Cheap but accurate model of E_P

De-black box:

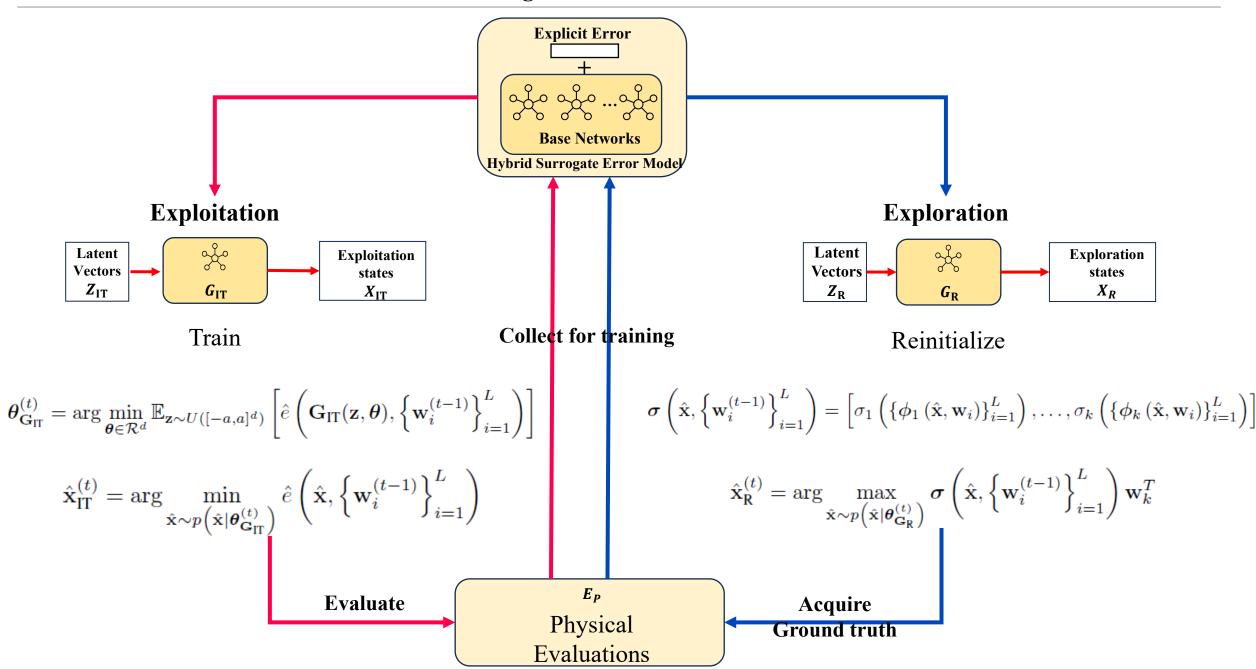
Explicit Error: error element that is efficient to calculate and differentiable Implicit Error: error element that is (1) time-consuming to calculate or (2) indifferentiable

Ensemble Learning: Reduce estimation uncertainty increase estimation robustness

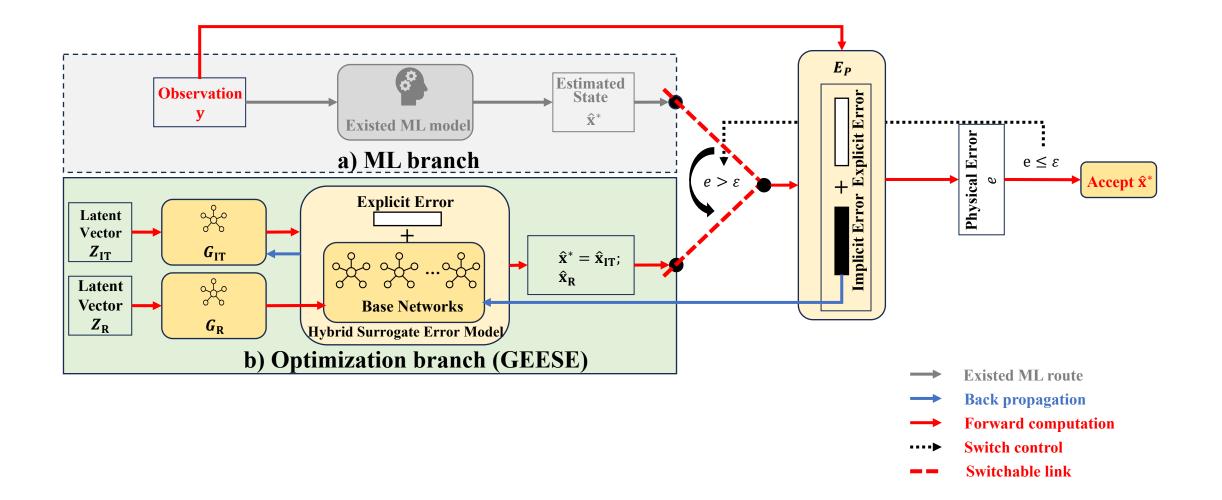
$$\hat{\mathbf{e}}_{\text{im}}\left(\hat{\mathbf{x}}, \{\mathbf{w}_i\}_{i=1}^L\right) = \frac{1}{L}\sum_{i=1}^L \phi\left(\hat{\mathbf{x}}, \mathbf{w}_i\right)$$



Design: Twin Selection



GEESE



Experiment

Experimental setting

- Three engineering problem: Turbofan Design, 2. Electro-mechanical Actuator Design, 3, Pulse-width Modulation of 13-level Inverters
- Configuration: 100 independent test cases per problem, the allowed query times to physical evaluation E_P is 1000. **Metrics:**

Failure times: total failure times in 100 cases

Query times: the average query times needed for correcting state.

	Problem 1		Problem 2		Problem 3	
Algorithm	State Dimension:11		State Dimension:20		State Dimension:30	
	Failure times	Query times	Failure times	Query times	Failure times	Query times
BOGP	0	3.29 ± 1.51	97	973.76 ±144.28	4	112.66 ±229.98
GA	0	64.00 ±0.00	0	130.56 ±63.31	13	231.76 ±339.71
PSO	0	64.00 ± 0.00	0	64.00 ± 0.00	12	244.16±343.71
CMAES	0	55.67 ±3.28	0	119.44 ±41.80	12	227.42 ±312.17
ISRES	0	65.00±0.00	0	177.64 ±80.51	16	250.05 ±350.16
NSGA2	0	64.00 ± 0.00	0	139.52 ±68.56	13	232.40 335.94
UNSGA3	0	64.00 ± 0.00	0	140.80 ±79.94	12	227.52 ±330.07
SVPEN	100	1000.00 ± 0.00	100	1000.00±0.00	100	1000.00 ± 0.00
GEESE (Ours)	0	3.18 ±1.98	0	51.65 ±33.01	0	43.56 ±65.28

- propose a novel approach, GEESE, to correct wrong state estimation through optimization, aiming at delivering both low error and high efficiency.
- a hybrid surrogate error model to provide fast error estimations to reduce simulation cost and to enable gradient based backpropagation of error feedback.
- two generative models to approximate the probability distributions of the candidate states for simulating the exploitation and exploration behaviors.
- GEESE is tested on three real-world SAE inverse problems. Results show that it fails the least number of times in terms of finding a feasible state correction, and requires physical evaluations less frequently in general.

Future work: how to correct high-dimension state estimation?

NeurIPS 2023

Physics-Driven ML-Based Modelling for Correcting Inverse Estimation

Ruiyuan Kang¹, Tingting Mu², Panos Liatsis¹, Dimitrios Kyritsis¹

Paper Link: https://arxiv.org/abs/2309.13985

Thank you!