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Link Prediction on Knowledge Graphs

Knowledge graph is a graph with 
edges labelled with relation types.
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Knowledge graph is a graph with 
edges labelled with relation types.

Link prediction is to predict missing 
link or relation on pairs of nodes.
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( , )

R-MPNNs relies on 
binary decoder for 
link prediction.
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R-MPNNs relies on 
binary decoder for 
link prediction.

Prominent examples 
are RGCN [1] and 
CompGCN [2].
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Relational Message Passing Neural Networks

13

R-MPNNs are at most as 
powerful as relational 
local 1-WL test [3].
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Relational Message Passing Neural Networks
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Higher order method 
is computationally 
prohibitive.

R-MPNNs are at most as 
powerful as relational 
local 1-WL test [3]
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Relational Message Passing Neural Networks

15

Higher order method 
is computationally 
prohibitive.

R-MPNNs are at most as 
powerful as relational 
local 1-WL test [3]

What is a good trade off between expressivity and scalability?
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Conditional Message Passing 
Neural Networks (C-MPNNs)
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NBFNet [4] locally computes 
pairwise representations by 
conditioning.
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NBFNet [4] locally computes 
pairwise representations by 
conditioning.
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NBFNet [4] locally computes 
pairwise representations by 
conditioning.

The initialization function 
must satisfy target node 
distinguishability.
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The history function shows which 
historical self-representation we 
choose to update.



Conditional Message Passing Neural Networks
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We prove that the choice of the 
historic function is irrelevant in  
theoretical expressiveness. 

The history function shows which 
historical self-representation we 
choose to update.
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Conditional Message Passing Neural Networks
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C-MPNNs relies on 
unary decoder for 
link prediction.

(  )
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C-MPNNs are at most as 
expressive as relational 
asymmetric local 2-WL (rawl2).
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C-MPNNs are at most as 
expressive as relational 
asymmetric local 2-WL (rawl2).

There exists a C-MPNN (even 
without readout) that achieves 
the same express power of rawl2.



Logical Characterization of C-MPNNs
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C-MPNNs (without readout) can uniformly express precisely functions in rFO3
cnt.

C-MPNNs (with readout) can uniformly express all functions in erFO3
cnt. 



Summary and Outlook
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Pairwise representation: C-MPNNs encodes pairwise node 
representations conditioned on source node.

Thank you! 

Expressiveness results: C-MPNNs can match the expressive power 
of relational asymmetric local 2-WL, and logical characterizations.

Experimental validation: Experimental analysis is carried out to verify 
the impact of model choices to validate our theoretical findings.
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