LD²: Scalable Heterophilous GNN with Decoupled Embeddings

Ningyi Liao Siqiang Luo Xiang Li Jieming Shi

PRESENT BY: Ningyi Liao

Background: Heterophilous GNN

- Heterophily: connected nodes tend to be of dissimilar labels
- Example: fraudster normal user in transaction networks
- Locality-based GNNs not suitable under heterophily
- Existing heterophilous GNNs rely on global computation

Challenge: Hetero GNNs not Scalable Enough

Natural conflict:

Global Computation vs Scalability & Minibatch

Model	Time - Precomp	Time - Train	Time - Test	GPU Memory
GPRGNN	<i>O</i> (<i>m</i>)	$O(IL_PmF + ILnF^2)$	$O(L_P mF + LnF^2)$	$O(LnF + m + LF^2)$
GCNJK	_	$O(ILmF + ILnF^2)$	$O(LmF + LnF^2)$	$O(L_C nF + L_C F^2)$
MixHop	-	$O(IL_PLmF + ILnF^2)$	$O(L_P LmF + LnF^2)$	$O(CLnF + CLF^2)$
LINKX	_	$O(ImF + ILnF^2)$	$O(mF + LnF^2)$	$O(L_C n_b F + L_C F^2 + nF)$
LD ² (ours)	$O(L_P mF)$	$O(ILnF^2)$	$O(LnF^2)$	$O(L_C n_b F + L_C F^2)$

Terms that not suitable for minibatch

Method: LD² Framework

- Precomputation:
 - $\boldsymbol{P}_A, \boldsymbol{P}_X = \mathrm{A}^2 \mathrm{Prop}(\boldsymbol{A}, \boldsymbol{X})$

• Feature Transformation:

 $\boldsymbol{H}^{(L)} = \mathrm{MLP}(\boldsymbol{P}_{A}\boldsymbol{W}_{A}\|\boldsymbol{P}_{X}\boldsymbol{W}_{X})$

Approximate Propagation + Feature Embedding + Feature Transformation

Method: Adjacency Embedding

• Low-Dimensional 2-hop adjacency decomposition

Method: Feature Embedding

• Long-Distance generalized graph propagation

CHANNEL1: Constant 2-hop Adjacency Propagation

$$P_{X,L2} = \sum_{l=1}^{L} \bar{A}^{2l} \cdot X$$

CHANNEL²: *Inverse* 1-hop Laplacian Propagation

$$\boldsymbol{P}_{X,H} = \sum_{l=1}^{L} (\tilde{\boldsymbol{L}} + \boldsymbol{I})^{l} \cdot \boldsymbol{X}$$

Evaluation: Effectiveness

- Top 1 accuracy on 6/8 large-scale heterophilous datasets
- No accuracy drop for minibatch

Dataset	genius	tolokers	arxiv-year	penn94	twitch-gamers	pokec	snap-patents	wiki
Nodes n	421,858	11,758	169,343	41,536	168,114	1,632,803	2,738,035	1,770,981
Edges m	922,864	1,038,000	1,157,799	1,362,220	6,797,557	22,301,964	13,967,949	242,507,069
F / N_c	12/2	10/2	128 / 5	4,814 / 2	7/2	65 / 2	269 / 5	600 / 5
MLP	82.47 ±0.06	73.38 ±0.25	37.23 ±0.31	74.41 ±0.48	61.26 ±0.19	61.81 ±0.07	23.03 ± 1.48	35.64 ±0.10
PPRGo	79.81 ±0.00	78.16 ± 0.00	39.35 ± 0.12	58.75 ±0.31	47.19 ±2.26	50.61 ± 0.04	(>12h)	(>12h)
SGC	79.85 ±0.01	71.16 ±0.06	43.40 ± 0.16	68.31 ± 0.27	57.05 ±0.21	56.58 ± 0.06	37.70 ± 0.06	28.12 ± 0.08
GCNJK-GS	80.65 ± 0.07	74.41 ±0.73	48.26 ± 0.64	65.91 ±0.16	59.91 ± 0.42	59.38 ± 0.21	33.64 ± 0.05	42.95 ±0.39
MixHop-GS	80.63 ± 0.04	77.47 ± 0.40	49.26 ±0.16	75.00 ± 0.37	61.80 ± 0.00	64.02 ± 0.02	34.73 ± 0.15	45.52 ± 0.11
LINKX	82.51 ±0.10	77.74 ±0.13	50.44 ±0.30	78.63 ±0.25	64.15 ± 0.18	68.64 ± 0.65	52.69 ± 0.05	50.59 ± 0.12
LD ² (ours)	85.31 ±0.06	79.76 ±0.26	50.29 ± 0.11	75.52 ±0.10	64.33 ±0.19	74.93 ±0.10	58.58 ±0.34	52.91 ±0.16

Evaluation: Efficiency

- 3-15× faster minibatch training, significantly fast inference
- Up to 5× lower GPU memory for large graphs

Dataset	twitch-gamers		pokec			snap-patents			wiki			
	Learn	Infer	Mem.	Learn	Infer	Mem.	Learn	Infer	Mem.	Learn	Infer	Mem.
MLP	6.36	0.02	0.61	47.86	0.11	13.77	27.39	0.28	9.33	133.55	0.62	18.15
PPRGo	10.46+15.88	0.41	9.64	121.95+56.11	2.69	3.82	(>12h)		(>12h)			
SGC	0.09+0.74	0.01	0.28	1.05+8.08	0.01	0.28	4.94+23.54	0.01	0.42	12.66+7.98	0.01	0.52
GCNJK-GS	71.48	0.02*	7.33	27.33	0.09*	9.03	19.02	0.23*	9.21	95.52	0.69*	16.36
MixHop-GS	52.12	0.01*	1.49	71.35	0.03*	12.91	45.24	0.16*	19.58	84.22	0.23*	16.28
LINKX	10.99	0.19	2.35	28.77	0.33	9.03	39.80	0.22	21.53	180.71	1.14	14.53
LD ² (ours)	0.85+ 1.96	0.01	1.44	17.95+ 6.18	0.01	3.82	31.32+ 6.96	0.02	3.96	28.12+ 6.50	0.01	4.47

THANK YOU

Acknowledgments

This research is supported by Singapore MOE AcRF Tier-2 funding (MOE-T2EP20122-0003), NTU startup grant (020948-00001), and the Joint NTU-WeBank Research Centre on FinTech. Xiang Li is supported by Shanghai Science and Technology Committee General Program No. 22ZR1419900 and National Natural Science Foundation of China No. 62202172. Jieming Shi is supported by Hong Kong RGC ECS No. 25201221, National Natural Science Foundation of China No. 62202404.