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Background: data scarcity

The power of DNNs depends heavily on the quantity of training data

Data scarcity: there are many real-world scenarios where only a
limited amount of data is accessible for training

(b) Medical diagnosis

(a) Automatic driving
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Dataset expansion: a new task

Collecting and annotating data on a large scale is often costly and
time-consuming in such applications

Dataset expansion: an automatic data generation pipeline to expand a
small dataset into a larger & more informative one for model training
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Preliminary explorations of previous techniques

Naive applications of existing methods cannot address this task

Data augmentation mainly varies the surface visual characteristics of
an image, but cannot create images with new content

Input Our GIF-DALLE Our GIF-SDGridMask RandAugment Input RandAugment Our GIF-SD

Direct synthesis with pre-trained generative models: those models are
class-agnostic to the target dataset, and cannot ensure the synthetic
samples have the correct labels and are beneficial to model training
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Our motivation

Motivation: different from the above methods, our solution is inspired
by human learning with imagination

Such an imagination process is highly useful for dataset expansion,
since it does not simply perturb the object’s appearance but applies
rich prior knowledge to create object variants with new information
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Our solution

In light of this, we design a new guided imagination framework (GIF)
for dataset expansion

GIF expands datasets effectively in various small-data scenarios,
boosting model accuracy by 36.9% on average over six natural image
datasets and by 13.5% on average over three medical datasets
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Our idea

We attempt to build a computational model to simulate the
imagination process, based on prior models, for dataset expansion

Prior model: deep generative models are trained to capture the entire
distribution of a training dataset, and thus can be used as prior
models to generate samples with new content

DALLE-2MAE Stable Diffusion
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Computational imagination models and Challenges

Given a prior model G, and a seed example (x, y) from the small
dataset to expand, we formulate the imagination as x′ = G(f(x)+ δ)

Here, f(·) is an image encoder to transform the raw image into an
embedding for imagination, and δ is a perturbation applied to f(x)
such that G can generate x′ different from x

Key questions:

1 How to optimize δ to provide useful guidance: ensure the generated
samples with correct labels and is helpful for model training?

2 How to conduct effective expansion: sample-agnostic vs sample-wise
expansion? pixel-level vs channel-level update?
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Class-maintained informativeness boosting

Key insight: the generated sample x′ should bring new information
compared to x, while retaining the same class semantics

This is difficult to achieve after perturbation in the latent space

We find that using CLIP zero-shot abilities to maintain class labels
and boost informativeness can lead to better expansion effectiveness
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Sample diversity promotion

To avoid “imagination collapse” where generative models generate
excessively similar data, we further promote sample diversity

The generated images with diversity guidance are more diversified

This can lead to 1.4% additional accuracy gains on CIFAR100-Subset

Input DALLE expansion Guided DALLE expansion
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Sample-wise expansion

We find that sample-wise expansion performs much better

Given a fixed expansion ratio, the sample-agnostic expansion strategy
tends to select more expanded samples for easy-to-augment images

This leads sample-agnostic expansion to waste valuable original
samples for expansion and also incurs a class-imbalance problem

Expanding Small-Scale Datasets with Guided Imagination

B. More Preliminary Studies
B.1. Sample-wise expansion or sample-agnostic expansion?

When we design the selective expansion strategy in Section 3.2, another question appears: should we ensure that each sample
is expanded by the same ratio? To determine this, we empirically compare RandAugment expansion with sample-wise
selection and sample-agnostic selection according to one expansion criteria, i.e., class-maintained information boosting.
Figure 8 shows that sample-wise expansion performs much better than sample-agnostic expansion. To find out the reason for
this phenomenon, we visualize how many times a sample is expanded by sample-agnostic expansion. As shown in Figure 9,
the expansion numbers of different samples by sample-agnostic expansion present a long-tailed distribution (Zhang et al.,
2021c), where many image samples are not even expanded. The main reason is that, due to the randomness of RandAugment
and the differences among images, not all created samples are informative and it is easier for some samples to be augmented
more frequently than others. Therefore, given a fixed expansion ratio, the sample-agnostic expansion strategy, as it ignores
the differences in images, tends to select more expanded samples for those easy-to-augment images. This property leads
sample-agnostic expansion to waste valuable original samples for expansion (i.e., loss of information) and also incurs a
class-imbalance problem, thus resulting in worse performance in Figure 8. In contrast, sample-wise expansion can fully take
advantage of all the samples in the target dataset and thus is more effective than sample-agnostic expansion, which should
be considered when designing dataset expansion approaches.
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Figure 8. Comparison of model performance between samples-wise
selection and sample-agnostic selection for RandAugment expan-
sion on CIFAR100-Subset.
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Figure 9. Statistics of the expansion numbers of different data in
CIFAR100-Subset by sample-agnostic selective expansion with
RandAugment, which presents a long-tailed distribution.

B.2. Pixel-level noise or channel-level noise?

When we explore the MAE expansion strategy in preliminary studies, we first explore pixel-level noise to vary latent
features, which, however, does not perform well. We dig into the reason behind it by visualizing the reconstructed images.
One illustrated example is given in Figure 10(d), from which we find that the generated image based on pixel-level noise
variation is analogous to adding pixel-level noise to the original images. This may harm the integrity and smoothness of
image content, leading the reconstructed images to be noisy and less informative. In comparison, as shown in Figure 10(b),
the strong augmentation method (i.e., RandAugment) mainly varies the style and geometric position of images, but slightly
changes the content semantics of images, so it can better maintain the content consistency. This difference inspires us to
factorize the influences on images into two dimensions: image styles and image content. In light of (Huang & Belongie,
2017), we know that the channel-level latent feature encodes more subtle style information, whereas the token-level latent
feature encodes more content information. We thus decouple the latent feature of MAE into two dimensions (i.e., a token
dimension and a channel dimension), and plot the latent feature distribution change between the generated image and the
original image in these two dimensions.
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Pixel-level optimization vs channel-level optimization?

We first explore pixel-level noise optimization to vary latent features
in MAE, which, however, does not perform well

original MAE

fixed pixel noise
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learned channel noise
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We find that the generated image based on pixel-level noise variation
is analogous to adding pixel-level noise to the original images

(a) original image (b) RandAugment (c) MAE reconstruction (d) noised-added MAE (e) our Guided MAE
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Channel-level noise optimization

MAE with pixel noise variation may harm the integrity and
smoothness of image content, while RandAugment slightly changes
the content of images but their styles and geometric positions

This difference inspires us to factorize the influences on images into
two perspectives: image styles (i.e., channel dimension of latent
feature) and image content (i.e., token dimension of latent feature)
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Summary of preliminary studies

How to optimize δ to provide useful guidance: ensure the generated
samples with correct labels and is helpful for model training?

1 Class-maintained informativeness boosting
2 Sample diversity promotion

How to conduct effective expansion: sample-agnostic vs sample-wise
expansion? pixel-level vs channel-level update?

1 Sample-wise expansion
2 Channel-level noise optimization
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Guided imagination framework (GIF)

To detail GIF, we use DALL-E2 as a prior model for illustration
input

CLIP image
encoder

imagined images

DALL-E2
decoder

informativeness
guidance

CLIP text 
encoder

class names

perturbed

zero-shot classifier 

optimized 
latent

feature repeated

“cat”
“dog”
“car”

cat
dog
car

⊕

For each latent feature f , we inject residual multiplicative
perturbation with randomly initialized noise z ∼ U(0, 1) and bias
b ∼ N (0, 1) and enforce an ε-ball constraint Pf,ϵ(·):

f ′ = Pf,ϵ((1 + z)f + b),

In light of our explored criteria, GIF optimizes z and b over the latent
feature space as follows:

z′, b′ ←− argmax
z,b

Sinf + Sdiv,
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Guided imagination framework (GIF)

GIF optimizes z and b over the latent feature space as follows:

z′, b′ ←− argmax
z,b

Sinf + Sdiv,

Class-maintained informativeness: we design Sinf to improve the
information entropy of the perturbed feature while maintaining its
class semantics as the seed sample

Sinf = s′j + (s log(s)− s′ log(s′)), s.t. j = argmax(s),

Sample diversity: To promote the diversity of the generated samples,
we design Sdiv as the Kullback–Leibler (KL) divergence among all
perturbed latent features of a seed sample

Sdiv = DKL(f
′∥f̄),
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Theoretical analysis

We theoretically find our method benefits model generalization

We resort to δ-cover, and define the dataset diversity by δ-diversity as
the inverse of the minimal δmin, i.e., δdiv = 1

δmin

Theorem

Let A denote a learning algorithm that outputs a set of parameters given a
dataset D = {xi, yi}i∈[n] with n i.i.d. samples drawn from distribution PZ .
Assume the hypothesis function is λη-Lipschitz continuous, the loss function
ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is bounded by L, with
ℓ(xi, yi;A) = 0 for all i ∈ [n]. If D constitutes a δ-cover of PZ , then with
probability at least 1− γ, the generalization error bound satisfies:

|Ex,y∼PZ [ℓ(x, y;A)]− 1

n

∑
i∈[n]

ℓ(xi, yi;A)|
c
≤ λℓ + ληLC

δdiv
,

where C is a constant and
c
≤ indicates “smaller than” up to a constant.
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Theoretical analysis

This theorem shows that the more diverse samples are created, the
more improvement of generalization performance:

|Ex,y∼PZ [ℓ(x, y;A)]− 1

n

∑
i∈[n]

ℓ(xi, yi;A)|
c
≤ λℓ + ληLC

δdiv

1 In real small-data applications, the data limitation issue leads the
covering radius δ to be very large and thus the δ-diversity is low

2 Simply increasing the data number (e.g., via data repeating) does not
help generalization since it does not increase δ-diversity

3 GIF applies two key criteria to create informative and diversified new
samples. The expanded dataset thus has higher data diversity, leading
to higher δ-diversity and boosting model generalization
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Implementation of GIF-DALLE

GIF-DALLE follows exactly the above pipeline for guided imagination

Expanding Small-Scale Datasets with Guided Imagination

D. More Method and Implementation Details
D.1. Method details of GIF-DALLE

Thanks to strong image generation abilities, GIF-DALLE applies DALL-E2 (Ramesh et al., 2022) as its prior model which
follows the pipeline described in Section 4. Its pseudo-code is provided in Algorithm 1, where the image embedding
obtained by fCLIP-I serves as diffusion guidance to help the diffusion decoder to generate new images. GIF-DALLE conducts
guided imagination on the CLIP embedding space.

We further clarify the implementation of the proposed guidance. Specifically, class-maintained informativeness Sinf
encourages the consistency between the predicted classification scores s and s′, and improves the information entropy for
the predicted score of the generated sample s′:

Sinf = s′j + (s log(s)− s′ log(s′)), s.t., j = argmax(s). (5)

Here, j = argmax(s) is the predicted class label of the original latent feature. Such a criterion helps to keep the class
semantics of the optimized feature to be the same as that of the original one in the CLIP embedding space while encouraging
the perturbed feature to have higher information entropy regarding CLIP zero-shot predictions. This enables the generated
samples to be more informative for follow-up model training. To promote sample diversity, the diversity Sdiv is computed
by the Kullback–Leibler (KL) divergence among all perturbed latent features of a seed sample as follows:

Sdiv = DKL(f
′∥f̄) = σ(f ′) log(σ(f ′)/σ(f̄)), (6)

where f ′ denotes the current perturbed latent feature and f̄ indicates the mean over the K perturbed latent features of this
seed sample. In implementing diversity promotion Sdiv , we measure the dissimilarity of two feature vectors by applying the
softmax function σ(·) to the latent features, and then measuring the KL divergence between the resulting probability vectors.

Algorithm 1 GIF-DALLE Algorithm
Input: Original small dataset Do; CLIP image encoder fCLIP-I(·); DALL-E2 diffusion decoder G(·); CLIP zero-shot classifier w(·);

Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅
for x ∈ Do do
Sinf = 0
f = fCLIP-I(x) ; // latent feature encoding for seed sample
s = w(f) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1)
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // noise perturbation (Eq.(1))
s′ = w(f ′

i) ; // CLIP zero-shot prediction
Sinf += s′j+(s log(s)−s′ log(s′)), s.t. j = argmax(s) ; // class-maintained informativeness (Eq.(5))

end
f̄ = mean({f ′

i}Ki=1)
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // sample diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent feature optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.

More implementation details. In our experiment, DALL-E2 is pre-trained on Laion-400M (Schuhmann et al., 2021)
and then used for dataset expansion. The resolution of the created images by GIF-DALLE is 64×64 for model training
without further super-resolution. Only when visualizing the created images, we use super-resolution to up-sample the
generated images to 256×256 for clarification. Moreover, we set ε = 0.1 in the guided latent feature optimization. During
the diffusion process, we set the guidance scale as 4 and adopt DDIM sampler (Song et al., 2020) for 100-step diffusion. For
expanding medical image datasets, it is necessary to fine-tune the prior model for alleviating domain shifts.
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Implementation of GIF-MAE

Dislike GIF-DALLE, GIF-MAE first generates the latent feature via its
encoder, and then conducts channel-wise latent optimization

Expanding Small-Scale Datasets with Guided Imagination

Implementation details. In our experiment, we implement GIF-SD based on CLIP VIT-B/32 and Stable Diffusion v1-4,
which are pre-trained on large datasets and then used for dataset expansion. Here, we use the official checkpoints of CLIP
VIT-B/32 and Stable Diffusion v1-4. The resolution of the created images by GIF-SD is 512×512 for all datasets. Moreover,
for guided latent feature optimization in GIF-SD, we set ε = 0.8 for CIFAR100-S, DTD, Cars, Flowers, and Pets datasets,
while we set ε = 4 for Caltech101. On medical image datasets, we set ε = 0.5 for OrganSMNIST, and ε = 0.1 for
BreastMNIST and PathMNIST. During the diffusion process, we adopt DDIM sampler (Song et al., 2020) for 50-step latent
diffusion. Moreover, the hyper-parameters of strength and scale in SD depend on datasets, while more analysis is provided
in Appendix B.4. Note that, for expanding medical image datasets, it is necessary to fine-tune the prior model for alleviating
domain shifts.

D.3. Method details of GIF-MAE

Thanks to strong image reconstruction abilities, our GIF-MAE applies the MAE-trained model (He et al., 2022) as its prior
model. As its encoder is different from the CLIP image encoder, we slightly modify the pipeline of GIF-MAE.

Pipeline. As shown in Algorithm 3, GIF-MAE first generates a latent feature for the seed image via its encoder, and
conducts channel-wise noise perturbation. Here, the latent feature of MAE has two dimensions: spatial dimension and
channel dimension. As discussed in our preliminary (cf. Appendix B.2), the channel-level latent feature encodes more
subtle style information, whereas the token-level latent feature encodes more content information. Motivated by the finding
in this preliminary study, we particularly conduct channel-level noise to optimize the latent features in our GIF-MAE
method for maintaining the content semantics of images unchanged. Based on the perturbed feature, GIF-MAE generates an
intermediate image via its decoder and applies CLIP to conduct zero-shot prediction for both the seed and the intermediate
image to compute the guidance. With the guidance, GIF-MAE optimizes the latent features for creating content-consistent
samples of diverse styles. Here, GIF-MAE conducts guided imagination on its own latent space.

Algorithm 3 GIF-MAE Algorithm
Input: Original small dataset Do; MAE image encoder f(·) and image decoder G(·); CLIP image encoder fCLIP-I(·); CLIP zero-shot

classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅
for x ∈ Do do
Sinf = 0
f = f(x) ; // latent feature encoding for seed sample
s = w(fCLIP-I(x)) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1)
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // channel-level noise perturbation (Eq.(1))
x′
i = G(f ′

i) ; // intermediate image generation
s′ = w(fCLIP-I(x

′
i))

Sinf += s′j+(s log(s)−s′ log(s′)), s.t. j = argmax(s) ; // class-maintained informativeness (Eq.(5))
end
f̄ = mean({f ′

i}Ki=1)
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // sample diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent feature optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided channel-wise noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.

Implementation details. In our experiment, we implement GIF-MAE based on CLIP VIT-B/32 and MAE VIT-L/16,
which are pre-trained on large datasets and then fixed for dataset expansion. Here, we use the official checkpoints of CLIP
VIT-B/32 and MAE VIT-L/16. The resolution of the created images by GIF-MAE is 224×224 for all datasets. Moreover,
we set ε = 5 for guided latent feature optimization in GIF-MAE.
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Implementation of GIF-SD

GIF-SD has one more step than GIF-MAE before noise perturbation,
i.e., conducting prompt-guided diffusion for the latent feature

Expanding Small-Scale Datasets with Guided Imagination

D.2. Method details of GIF-SD

Thanks to strong text-to-image generation abilities, GIF-SD applies Stable Diffusion (SD) (Rombach et al., 2022) as its
prior model. As its encoder differs from the CLIP image encoder, we slightly modify the pipeline of GIF-SD.

Pipeline. As shown in Algorithm 2, GIF-SD first generates a latent feature for the seed image via its image encoder.
Following that, GIF-SD conducts prompt-based diffusion for the latent feature, where the generation rule of prompts will
be elaborated in Eq. (7). Please note that, with a suitable prompt design, the prompt-based diffusion helps to create more
diversified samples. Afterward, GIF-SD conducts channel-wise noise perturbation. Here, the latent feature of SD has three
dimensions: two spatial dimensions and one channel dimension. As discussed in our preliminary (cf. Appendix B.2),
the channel-level latent feature encodes more subtle style information, whereas the spatial-level latent features encode
more content information. In light of the finding in this preliminary study, we particularly conduct channel-level noise
to optimize the latent features in GIF-SD for further diversifying the style of the generated images while maintaining the
content semantics of the latent features (after prompt-guided diffusion) unchanged. Based on the randomly perturbed feature,
GIF-MAE generates an intermediate image via its image decoder and applies CLIP to conduct zero-shot prediction for both
the seed and the intermediate image to compute the guidance. With the guidance, GIF-SD optimizes the latent features for
creating more style-diverse samples. Here, GIF-SD conducts guided imagination on its own latent space.

Rule of prompt design. In our preliminary studies in Appendix B.3, we find that domain labels, class labels, and adjective
words are necessary to make the prompts semantically effective. Therefore, we design the prompts using the following rule:

Prompt := [domain] of a(n) [adj] [class]. (7)

For example, “an oil painting of a colorful fox”. To enable the prompts to be diversified, inspired by our preliminary studies,
we design a set of domain labels and adjective words for natural image datasets as follows.

- Domain label set: [“an image of”, “a real-world photo of”, “a cartoon image of”, “an oil painting of”, ”a sketch of”]

- Adjective word set: [“ ”, “colorful”, “stylized”, “high-contrast”, “low-contrast”, “posterized”, “solarized”, “sheared”,
“bright”, “dark”]

For a seed sample, we randomly sample a domain label and an adjective word from the above sets to construct a prompt.
Note that, for medical image datasets, we cancel the domain label set and replace it as the modality of the medical images,
e.g., [“Abdominal CT image of”], [“Colon pathological image of”].

Algorithm 2 GIF-SD Algorithm
Input: Original small dataset Do; SD image encoder f(·) and image decoder G(·); SD diffusion module fdiff(·; [prompt]); CLIP image

encoder fCLIP-I(·); DALL-E2 diffusion decoder G(·); CLIP zero-shot classifier w(·); Expansion ratio K; Perturbation constraint ε.
Initialize: Synthetic data set Ds = ∅
for x ∈ Do do
Sinf = 0
f = f(x) ; // latent feature encoding for seed sample
Randomly sample a [prompt] ; // Prompt generation (Eq.(7))
f = fdiff(f ; [prompt]) ; // SD latent diffusion
s = w(fCLIP-I(x)) ; // CLIP zero-shot prediction for seed sample
for i=1,...,K do

Initialize noise zi ∼ U(0, 1) and bias bi ∼ N (0, 1)
f ′
i = Pf,ϵ((1 + zi)f + bi) ; // noise perturbation (Eq.(1))
s′ = w(f ′

i) ; // CLIP zero-shot prediction
Sinf += s′j+(s log(s)−s′ log(s′)), s.t. j = argmax(s) ; // class-maintained informativeness (Eq.(5))

end
f̄ = mean({f ′

i}Ki=1)
Sdiv =

∑
i{DKL(σ(f

′
i)∥σ(f̄))}Ki=1 =

∑
i σ(f

′
i) log(σ(f

′
i)/σ(f̄)) ; // sample diversity (Eq.(6))

{z′i, b′i}Ki=1 ←− argmaxz,b Sinf + Sdiv ; // guided latent feature optimization (Eq.(2))
for i=1,...,K do

f ′′
i = Pf,ϵ((1 + z′i)f + b′i) ; // guided noise perturbation (Eq.(1))
x′′
i = G(f ′′

i ) ; // sample creation
Add x′′

i −→ Ds.
end

end
Output: Expanded dataset Do ∪ Ds.
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Expansion effectiveness

GIF is more effective in expanding small-scale datasets

Compared with the model trained on original datasets, GIF-SD leads
to 36.9% accuracy gains on average over six natural image datasets
and 13.5% gains over three medical datasets

Dataset
Natural image datasets Medical image datasets

Caltech101 Cars Flowers DTD CIFAR100-S Pets Average PathMNIST BreastMNIST OrganSMNIST Average

Original 26.3 19.8 74.1 23.1 35.0 6.8 30.9 72.4 55.8 76.3 68.2
CLIP 82.1 55.8 65.9 41.7 41.6 85.4 62.1 10.7 51.8 7.7 23.4
Distillation of CLIP 33.2 18.9 75.1 25.6 37.8 11.1 33.6 77.3 60.2 77.4 71.6

Expanded
Cutout 51.5 25.8 77.8 24.2 44.3 38.7 43.7 (+12.8) 78.8 66.7 78.3 74.6 (+6.4)
GridMask 51.6 28.4 80.7 25.3 48.2 37.6 45.3 (+14.4) 78.4 66.8 78.9 74.7 (+6.5)
RandAugment 57.8 43.2 83.8 28.7 46.7 48.0 51.4 (+20.5) 79.2 68.7 79.6 75.8 (+7.6)
MAE 50.6 25.9 76.3 27.6 44.3 39.9 44.1 (+13.2) 81.7 63.4 78.6 74.6 (+6.4)
DALL-E2 61.3 48.3 84.1 34.5 52.1 61.7 57.0 (+26.1) 82.8 70.8 79.3 77.6 (+9.4)
SD 51.1 51.7 78.8 33.2 52.9 57.9 54.3 (+23.4) 85.1 73.8 78.9 79.3 (+11.1)
GIF-MAE (ours) 58.4 44.5 84.4 34.2 52.7 52.4 54.4 (+23.5) 82.0 73.3 80.6 78.6 (+10.4)
GIF-DALLE (ours) 63.0 53.1 88.2 39.5 54.5 66.4 60.8 (+29.9) 84.4 76.6 80.5 80.5 (+12.3)
GIF-SD (ours) 65.1 75.7 88.3 43.4 61.1 73.4 67.8 (+36.9) 86.9 77.4 80.7 81.7 (+13.5)
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Expansion efficiency

GIF is more sample efficient than data augmentations

5× expansion by GIF-SD and GIF-DALLE even outperforms 20×
expansion by various data augmentations, implying our methods are
at least 4× more efficient than them on Cars
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Benefit to model generalization

GIF significantly boosts out-of-distribution (OOD) generalization,
bringing 11+% gain on average over 15 types of OOD corruption

Table: CIFAR100-C with the severity level 1
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 25.6 29.3 25.0 34.2 32.2 31.7 30.9 32.3 28.3 31.8 33.7 29.2 31.7 34.1 30.9 30.7
5×-expanded by GIF-SD 50.3 54.6 50.8 59.2 29.4 53.7 51.9 53.1 54.0 58.7 59.5 57.1 52.5 57.9 54.7 53.2 (+22.5)
20×-expanded by GIF-SD 55.0 60.5 54.8 66.1 30.2 56.0 58.0 61.1 62.2 65.1 66.2 64.3 59.2 63.8 60.8 58.9 (+27.2)

Table: CIFAR100-C with the severity level 3
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 12.8 17.0 12.5 30.5 31.7 25.2 28.6 26.5 19.0 18.6 28.3 11.5 29.5 33.6 28.8 23.6
5×-expanded by GIF-SD 29.7 36.4 32.7 51.9 32.4 39.2 46.0 45.3 38.1 47.1 55.7 37.3 48.6 53.2 49.4 43.3 (+19.3)
20×-expanded by GIF-SD 31.8 39.2 34.7 58.4 33.4 43.1 51.9 51.7 47.4 55.0 63.3 46.5 54.9 58.0 53.6 48.2 (+24.6)

Table: CIFAR100-C with the severity level 5
Noise Blur Weather Digital

Dataset Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Average

Original 9.4 10.7 5.5 24.9 28.9 22.3 25.9 19.4 16.6 8.2 18.3 2.7 29.0 31.8 27.3 18.7
5×-expanded by GIF-SD 21.4 23.8 10.8 31.8 22.8 33.1 37.6 38.1 31.1 24.7 43.7 8.6 38.6 36.0 45.6 29.8 (+11.1)
20×-expanded by GIF-SD 22.9 25.5 11.1 33.5 24.1 36.2 41.8 46.4 38.4 32.1 53.5 13.9 40.4 32.0 48.8 33.4 (+14.7)
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Applicability to various model architectures

The expanded datasets are readily used for training various model
architectures, bringing consistent gains for all the architectures

Dataset
Cars

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 19.8±0.9 18.4±0.5 32.0±0.8 26.2±4.2 24.1
5×-expanded by GIF-DALLE 53.1±0.2 43.7±0.2 60.0±0.6 47.8±0.6 51.2 (+27.1)
5×-expanded by GIF-SD 60.6±1.9 64.1±1.3 75.1±0.4 60.2±1.6 65.0 (+40.9)

Dataset
CIFAR100-S

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 35.0±3.2 36.3±2.1 42.0±0.3 50.9±0.2 41.1
5×-expanded by GIF-DALLE 54.5±1.1 52.4±0.7 55.3±0.3 56.2±0.2 54.6 (+13.5)
5×-expanded by GIF-SD 61.1±0.8 59.0±0.7 64.4±0.2 62.4±0.1 61.4 (+20.3)

Dataset
Pets

ResNet-50 ResNeXt-50 WideResNet-50 MobilteNet-v2 Avg.

Original dataset 6.8±1.8 19.0±1.6 22.1±0.5 37.5±0.4 21.4
5×-expanded by GIF-DALLE 46.2±0.1 52.3±1.5 66.2±0.1 60.3±0.3 56.3 (+34.9)
5×-expanded by GIF-SD 65.8±0.6 56.5±0.6 70.9±0.4 60.6±0.5 63.5 (+42.1)
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Effectiveness in long-tailed datasets

Compared to training on the original CIFAR100-LT dataset, 20×
expansion by our GIF-SD leads to a 13.5% model accuracy gain

GIF boosts the performance of few-shot classes more than many-shot
classes, which means that GIF helps to address class imbalance

CIFAR100-LT Training losses Many-shot classes Medium-shot classes Few-shot classes Overall

Original Cross-entropy 70.5 41.1 8.1 41.4
20×-expanded by GIF-SD Cross-entropy 79.5 (+9.0) 54.9 (+13.8) 26.4 (+18.3) 54.9 (+13.5)

Original Balanced Softmax 67.9 45.8 17.7 45.1
20×-expanded by GIF-SD Balanced Softmax 73.7 (+5.8) 59.2 (+13.4) 44.5 (+26.8) 59.9 (+14.8)
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Comparisons to CLIP

GIF has two advantages over CLIP in real small-data applications:

1 GIF has better applicability to the scenarios of different image domains,
like medical image domains

2 GIF creates expanded datasets ready for training various architectures,
which is more applicable to the scenario with hardware constraints

Dataset PathMNIST BreastMNIST OrganSMNIST

Original dataset 72.4±0.7 55.8±1.3 76.3±0.4

Linear-probing of CLIP 74.3±0.1 60.0±2.9 64.9±0.2

fine-tuning of CLIP 78.4±0.9 67.2±2.4 78.9±0.1

distillation of CLIP 77.3±1.7 60.2±1.3 77.4±0.8

5×-expanded by GIF-MAE 82.0±0.7 73.3±1.3 80.6±0.5

5×-expanded by GIF-DALLE 84.4±0.3 76.6±1.4 80.5±0.2

5×-expanded by GIF-SD 86.9±0.3 77.4±1.8 80.7±0.2
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Effectiveness of guidance

With our guidance, GIF obtains consistent performance gains
compared to unguided expansion with SD, DALL-E2, or MAE

Dataset
Natural image datasets Medical image datasets

Caltech101 Cars Flowers DTD CIFAR100-S Pets Average PathMNIST BreastMNIST OrganSMNIST Average

Original 26.3 19.8 74.1 23.1 35.0 6.8 30.9 72.4 55.8 76.3 68.2

MAE 50.6 25.9 76.3 27.6 44.3 39.9 44.1 (+13.2) 81.7 63.4 78.6 74.6 (+6.4)
GIF-MAE (ours) 58.4 44.5 84.4 34.2 52.7 52.4 54.4 (+23.5) 82.0 73.3 80.6 78.6 (+10.4)

DALL-E2 61.3 48.3 84.1 34.5 52.1 61.7 57.0 (+26.1) 82.8 70.8 79.3 77.6 (+9.4)
GIF-DALLE (ours) 63.0 53.1 88.2 39.5 54.5 66.4 60.8 (+29.9) 84.4 76.6 80.5 80.5 (+12.3)

SD 51.1 51.7 78.8 33.2 52.9 57.9 54.3 (+23.4) 85.1 73.8 78.9 79.3 (+11.1)
GIF-SD (ours) 65.1 75.7 88.3 43.4 61.1 73.4 67.8 (+36.9) 86.9 77.4 80.7 81.7 (+13.5)
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Ablation of guidance

Boosting the class-maintained informativeness Sinf is important for
GIF-DALLE expansion

Method Sinf Sdiv CIFAR100-Subset

GIF-DALLE

52.1±0.9

53.1±0.3

51.8±1.3

54.5±1.1

Both the class-maintained informativeness guidance Sinf and the
diversity promotion guidance Sdiv contribute to model performance

Method Designed prompts Sinf Sdiv CIFAR100-Subset

GIF-SD

52.9±0.8

56.2±1.0

59.6±1.1

59.4±1.2

61.1±0.8
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Visualization

GIF can create images with new content from the seed images

Input Our GIF-DALLE Our GIF-SDGridMask RandAugment

RandAugment randomly varies the medical images and may crop the
lesion areas. Hence, it cannot ensure the created samples are
informative, and even generates noisy samples

Input RandAugment Our GIF-SD
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Need we fine-tune generative models on medical datasets?

Directly applying pre-trained SD and DALL-E2 performs limited,
compared to GIF-MAE

Dataset PathMNIST BreastMNIST OrganSMNIST Average

Original 72.4±0.7 55.8±1.3 76.3±0.4 68.2
GIF-MAE 82.0±0.7 73.3±1.3 80.6±0.5 78.6

GIF-DALLE (w/o tuning) 78.4±1.0 59.3±2.5 76.4±0.3 71.4
GIF-DALLE (w/ tuning) 84.4±0.3 76.6±1.4 80.5±0.2 80.5

GIF-SD (w/o tuning) 80.8±1.6 59.4±2.2 79.5±0.4 73.2
GIF-SD (w/ tuning) 86.9±0.6 77.4±1.8 80.7±0.2 81.7

Pre-trained SD suffers from domain shifts between natural and
medical images, and cannot generate informative medical samples

Fine-tuning prior generative models is necessary for medical domains
Input Generated images

Pre-trained
Stable Diffusion

Fined-tuned
Stable Diffusion
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Comparison to infinite data augmentation

RandAugment with more epochs leads to better performance but
gradually converges

GIF-SD achieves better performance when training only 100 epochs

Methods Epochs Consumption Accuracy

Original
Standard training 100 1 million 35.0±1.7

Training with RandAugment 100 1 million 39.6±2.5

Training with RandAugment 200 2 million 46.9±0.9

Training with RandAugment 300 3 million 48.1±0.6

Training with RandAugment 400 4 million 49.6±0.4

Training with RandAugment 500 5 million 51.3±0.3

Training with RandAugment 600 6 million 51.1±0.3

Training with RandAugment 700 7 million 50.6±1.1

Expanded
5×-expanded by GIF-SD 100 6 million 61.1±0.8
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Comparison to picking related samples from larger datasets

Picking and labeling data from larger image datasets with CLIP has
the potential for dataset expansion

However, a large-scale related dataset may be unavailable while
selecting data from different image domains is unhelpful

CIFAR100-Subset Accuracy

Original dataset 35.0±1.7

Expanded dataset
5×-expanded by picking data from ImageNet with CLIP 50.9±1.1

5×-expanded by GIF-DALLE 54.5±1.1

5×-expanded by GIF-SD 61.1±0.8
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Relation analysis between domain gap and model accuracy

We compute the Fréchet Inception Distance (FID) between the
synthetic images and the original images of CIFAR100-S

One might assume that a lower FID indicates higher quality in the
expanded data, but in reality, it’s not always the case

The effectiveness depends on how much additional information and
class consistency the generated data can provide, rather than the
distribution similarity between those samples and the original data

Datasets FID Accuracy (%)

CIFAR100-S - 35.0
RandAugment 24.3 46.7
Cutout 104.7 44.3
Gridmask 104.8 48.2
GIF-MAE 72.3 52.7
GIF-DALLE 39.5 54.5
GIF-SD 81.7 61.1
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Safety check

We employ the Google Cloud Vision API1 to perform a safety check
on the 50,000 images generated by GIF-SD

The synthetic images by our method are safe and harmless

Metrics Very unlikely Unlikely Neutral Likely Very likely

Adult 96% 4% 0% 0% 0%
Spoof 82% 15% 3% 0% 0%
Medical 86% 14% 0% 0% 0%
Violence 69% 31% 0% 0% 0%
Racy 66% 25% 9% 0% 0%

1https://cloud.google.com/vision/docs/detecting-safe-search
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Summary

1 A new task of dataset expansion that contributes to boosting DNN
training in real small-data scenarios

2 Two key criteria for effective expansion: class-maintained
informativeness boosting and sample diversity promotion

3 A new Guided Imagination Framework for effective expansion: leading
to promising performance improvement on both small-scale natural
and medical image datasets
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Future directions

1 Huge headroom of dataset expansion: the expanded samples are still
less informative than the real ones. For example, 5×-expanded
CIFAR100-S (61.1±0.8) vs CIFAR100 (71.0±0.6)

2 Computational efficiency: although it is not our focus, exploring how
to conduct more computationally efficient expansion is important

3 More tasks: it is also exciting to conduct dataset expansion for object
detection and semantic segmentation
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Thanks
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More visualization of GIF-SD

Input Our GIF-SD expansion
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More visualization of GIF-DALLE

Input Our GIF-DALLE expansion
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More visualization of GIF-MAE

Input Our GIF-MAE expansion
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