

Label-efficient Segmentation via Affinity Propagation

Wentong Li^{1*}, Yuqian Yuan^{1*}, Song Wang¹, Wenyu Liu¹, Dongqi Tang², Jian Liu², Jianke Zhu¹, Lei Zhang³ ¹Zhejiang University ²Ant Group ³The Hong Kong Polytechnical University

Code: https://github.com/CircleRadon/APro

Project Page: https://LiWentomng.github.io/apro/

01/Background

Label-efficient segmentation with Sparse Annotations

• Compared with *fully supervision with mask annotations*, there are several sparse forms:

Bounding Box

Scribble

Single Point

Pretrained CLIP

Mask Prediction

01/Background

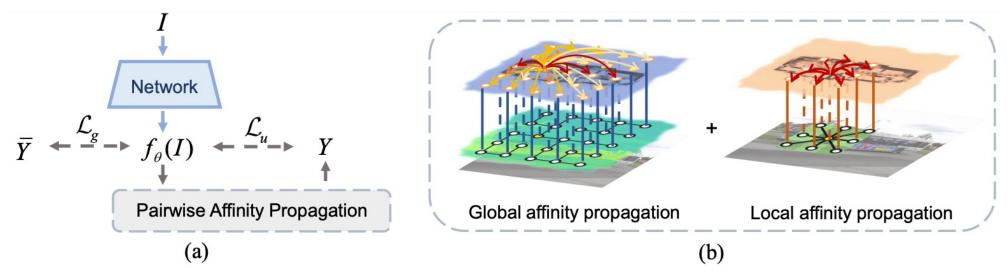
Limitations of Previous Methods

- Previous methods adopt the *local appearance kernel* (LAB color space or RGB color space)
 - Cannot capture global context cues and long-range affinity dependencies.
 - Fail to take the intrinsic **topology of objects** into account, lacks capability of **detail preservation**.



[1] Shiyi Lan et al, Vision transformers are good mask auto-labelers. *In CVPR, 2023*.
[2] Zhiyuan Liang et al, Tree energy loss: Towards sparsely annotated semantic segmentation. *In CVPR, 2022*.
[3] Zhi Tian et al, Boxinst: High-performance instance segmentation with box annotations. *In CVPR, 2021*.

APro

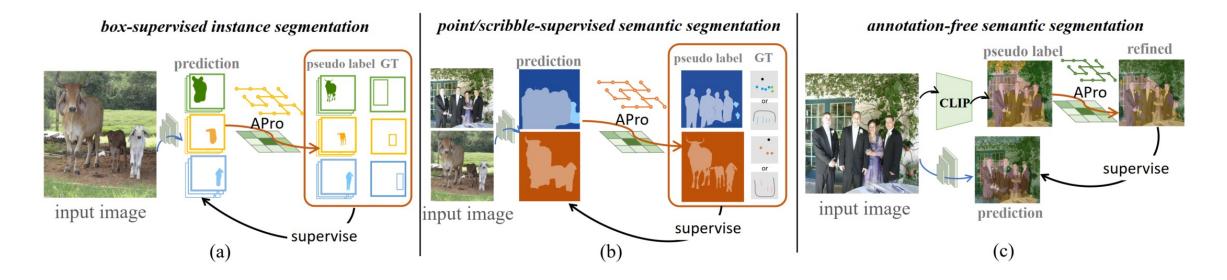


• We define the generation of pseudo label *Y* as an **affinity propagation process (APro)**:

$$y_i = \frac{1}{z_i} \sum_{j \in \tau} \phi(x_j) \psi(x_i, x_j) \tag{1}$$

• The proposed approach consists of global affinity propagation (GP) and local affinity propagation (LP) to generate accurate pseudo labels.

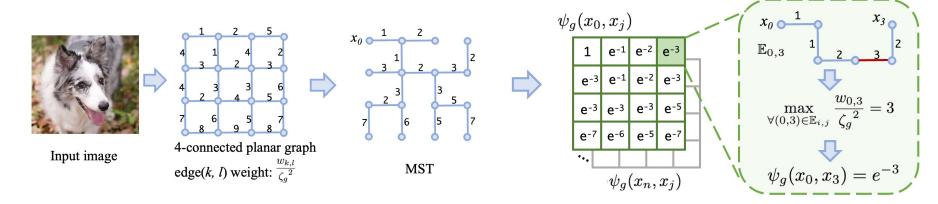
D APro: A general plug-in component



- Box-supervised instance segmentation
- Point/scribble-supervised semantic segmentation
- Annotation-free semantic segmentation

Global Affinity Propagation

tree-based sparse graph •



• global pairwise potential ψ_q :

$$\psi_g(x_i, x_j) = \mathcal{T}(I_i, I_j) = \exp\left(-\max_{\forall (k,l) \in \mathbb{E}_{i,j}} \frac{w_{k,l}}{\zeta_g^2}\right)$$
(1)
$$y_i^g = \frac{1}{z_i^g} \sum_{j \in \mathcal{V}} \phi(x_j) \psi_g(x_i, x_j), \quad z_i^g = \sum_{j \in \mathcal{V}} \psi_g(x_i, x_j)$$
(2)

 $j \in \mathcal{V}$

D Efficient Implementation

• Lazy Propagation scheme

$$\mathcal{Z}(\delta)_{k^*} = \mathcal{Z}(\delta)_{k^*} + \begin{cases} \exp(-w_{k,l}/{\zeta_g}^2)S(\delta)_l & \mathcal{U}_k.r\\ \exp(-w_{k,l}/{\zeta_g}^2)S(\delta)_l - \mathcal{Z}(\delta)_{l^*} & \text{othe} \end{cases}$$

• Global affinity propagation term

$$LProp(\delta)_i = \delta_i + \sum_{r \in Asc_{\mathcal{G}_T}(i) \cup \{i\}} \mathcal{Z}(\delta)_r,$$
(2)

• Time complexity $\mathcal{O}(N \log N)$.

Effic. Imple.	Ave. Runtime
×	4.3×10^{3}
✓	0.8

 U_k .rank > U_l .rank, otherwise,

Algorithm 1: Algorithm for GP process	
Input: Tree $\mathcal{G}_T \in \mathbb{N}^{e \times 2}$; Pairwise distance $w \in \mathbb{N}$	\mathbb{R}^N ; Dense predictions $\phi(x) \in \mathbb{R}^N$;
Vertex num N; Edge num $e = N - 1$; Set	of vertices \mathcal{V} .
Output: $y^g \in \mathbb{R}^N$.	
$\Lambda \leftarrow 1 \in \mathbb{R}^N$	
$F \leftarrow \{0, 1, 2,, N-1\}$	▷ Initialize each vertex as a connected block
Sort $\{\mathcal{G}_T, \boldsymbol{w}\}$ in ascending order of \boldsymbol{w} .	▷ Quick Sort
for $(k,l)\in \mathcal{G}_T, w_i\in oldsymbol{w}$ do	
$a \leftarrow \operatorname{find}(k), b \leftarrow \operatorname{find}(l)$	Find the root node with Path Compression
Update $\{\mathcal{Z}(\phi)_a, \mathcal{Z}(\Lambda)_a, \mathcal{Z}(\phi)_b, \mathcal{Z}(\Lambda)_b\}$	⊳ Add lazy tag
if $S_a < S_b$ then	
	▷ Merge by Rank
$\ \ F_b \leftarrow a$	▷ Merge two connected blocks
for $v \in \mathcal{V}$ do	
$p \leftarrow \operatorname{find}(v)$	
for $\delta \in \{\phi,\Lambda\}$ do	
if $p = v$ then	
$ LProp(\delta)_v = \mathcal{Z}(\delta)_v + \delta_v$	
else	
$\int y_v^g = rac{LProp(\phi)_v}{LProp(\Lambda)_v}$	▷ Normalization
return y ^g	

(1)

Local Affinity Propagation

- Use gaussian kernel
- The local pairwise term ψ_s

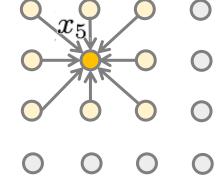
$$\psi_s(x_i, x_j) = \mathcal{K}(I_i, I_j) = \exp\left(\frac{-|I_i - I_j|^2}{\zeta_s^2}\right) \tag{1}$$

• The pseudo label y^s can be obtained via:

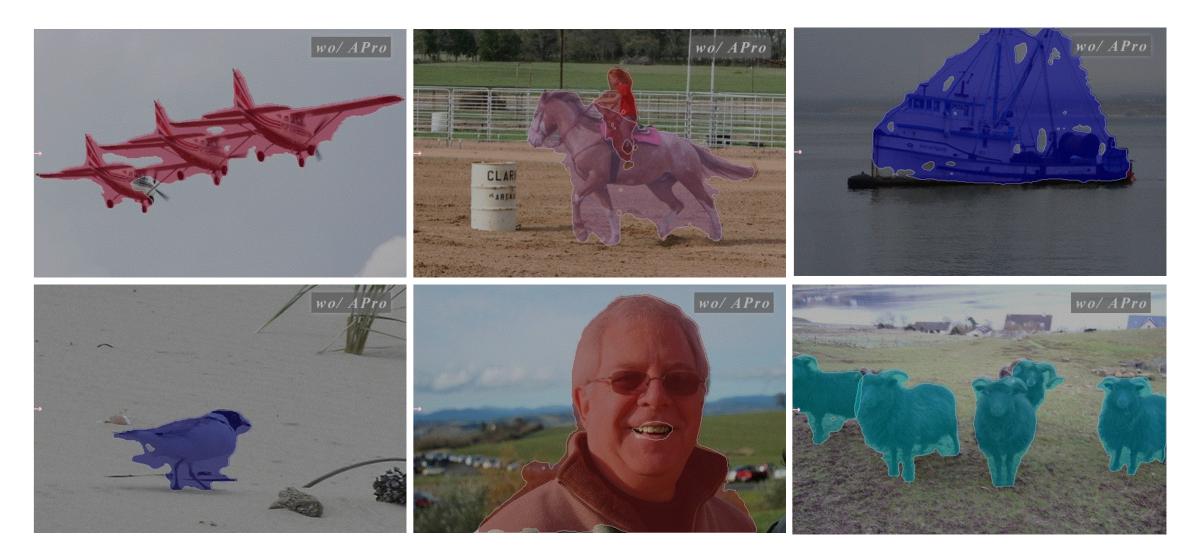
$$y_{i}^{s} = \frac{1}{z_{i}^{s}} \sum_{j \in \mathcal{N}(i)} \phi(x_{j}) \psi_{s}(x_{i}, x_{j}), \quad z_{i}^{s} = \sum_{j \in \mathcal{N}(i)} \psi_{s}(x_{i}, x_{j}), \quad (2)$$

• 5x faster than MeanField-based method^[1].

Gaussian Kernel



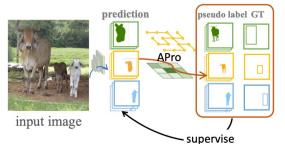
Weakly-supervised Instance Segmentation



Weakly-supervised Instance Segmentation

Pascal VOC COCO Method Backbone #Epoch AP AP_{50} AP₇₅ AP AP_{50} AP₇₅ 12 54.1 17.1 21.1 45.5 17.2 BBTP [NeurIPS19] [16] ResNet-101 23.1 36 34.3 34.6 54.4 32.5 BoxInst [CVPR21] [8] 58.6 31.8 ResNet-50 59.8 35.5 52.6 32.2 DiscoBox [ICCV21] [17] ResNet-50 36 31.4 -BoxLevelset [ECCV22] [9] 36 64.2 35.9 53.7 31.8 ResNet-50 36.3 31.4 SOLOv2 Framework Pairwise Loss [CVPR21] [8] ResNet-50 12 35.7 64.3 35.1 31.0 52.8 31.5 52.9 TreeEnergy Loss [CVPR22] [7] ResNet-50 12 35.0 64.4 34.7 30.9 31.3 12 64.7 34.9 53.1 31.4 CRF Loss [CVPR23] [10] ResNet-50 35.0 30.9 53.4 ResNet-50 12 37.1 65.1 37.0 32.0 32.9 APro(Ours) 36 Pairwise Loss [CVPR21] [8] 36.5 63.4 38.1 32.4 54.5 33.4 ResNet-50 TreeEnergy Loss [CVPR22] [7] 31.2 ResNet-50 36 36.1 63.5 36.1 31.4 54.0 36 64.0 35.7 54.9 33.2 CRF Loss [CVPR23] [10] ResNet-50 35.9 32.5 36 38.4 65.4 39.8 32.9 55.2 33.6 ResNet-50 APro(Ours) 36 40.5 67.9 42.6 34.3 57.0 35.3 APro(Ours) ResNet-101 Mask2Former Framework Pairwise Loss [CVPR21] [8] ResNet-50 12 35.2 62.9 33.9 33.8 57.1 34.0 12 65.0 34.3 33.5 56.7 33.7 TreeEnergy Loss [CVPR22] [7] ResNet-50 36.0 35.2 ResNet-50 12 35.7 64.3 33.5 57.5 33.8 CRF Loss [CVPR23] [10] 37.0 35.3 12 37.0 65.1 34.4 57.7 APro(Ours) ResNet-50 ResNet-50 50 42.3 70.6 44.5 36.1 62.0 36.7 APro(Ours) 45.7 38.7 APro(Ours) ResNet-101 50 43.6 72.0 38.0 63.6 50 77.6 53.1 68.3 41.9 49.6 41.0 APro(Ours) Swin-L

Table 1: Quantitative results (§4.1) on Pascal VOC [43] and COCO val [49] with mask AP(%).

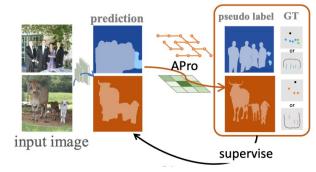


box-supervised instance segmentation

with mean IoII(%)

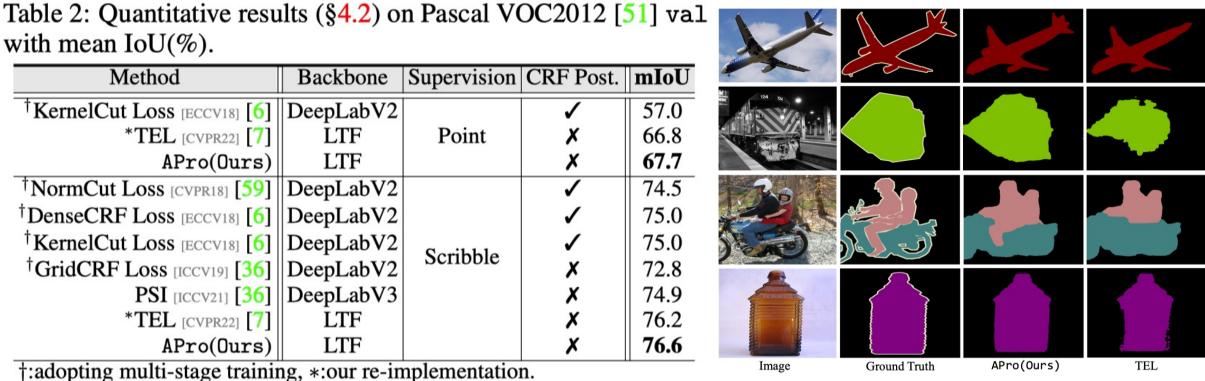
Weakly-supervised Semantic Segmentation

point/scribble-supervised semantic segmentation



with mean $100(\%)$.				
Method	Backbone	Supervision	CRF Post.	mIoU
[†] KernelCut Loss [ECCV18] [6]	DeepLabV2		1	57.0
*TEL [CVPR22] [7]	LTF	Point	X	66.8
APro(Ours)	LTF		X	67.7
[†] NormCut Loss [CVPR18] [59]	DeepLabV2		1	74.5
[†] DenseCRF Loss [ECCV18] [6]	DeepLabV2	Scribble	1	75.0
[†] KernelCut Loss [ECCV18] [6]	DeepLabV2		1	75.0
[†] GridCRF Loss [ICCV19] [36]	DeepLabV2		×	72.8
PSI [ICCV21] [36]	DeepLabV3		X	74.9
*TEL [CVPR22] [7]	LTF		X	76.2
APro(Ours)	LTF		×	76.6

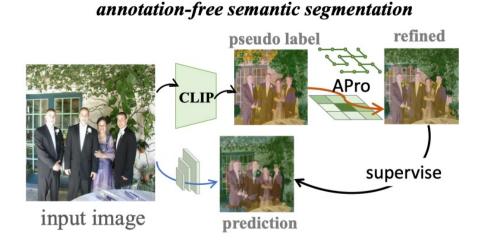
†:adopting multi-stage training, ***:our re-implementation.



□ CLIP-guided Semantic Segmentation

Table 3: Quantitative results (\$4.3) on Pascal VOC2012 [51] val, Pascal Context [60] val, and COCO-Stuff [61] val with mean IoU (%).

Method	CLIP Model	VOC2012	Context	COCO.
MaskCLIP+ [ECCV22] [40]	ResNet-50	58.0	23.9	13.6
APro(Ours)				14.6 \phi 1.0
MaskCLIP+ [ECCV22] [40]	ResNet-50×16	67.5	25.2	17.3
APro(Ours)		70.4 † 2.9		18.2 ↑0.9
MaskCLIP+ [ECCV22] [40]	ViT-B/16	73.6	31.1	18.0
APro(Ours)	VII-D/10	75.1 ↑1.5	32.6 1.5	$19.5 {\scriptstyle \uparrow 1.5}$



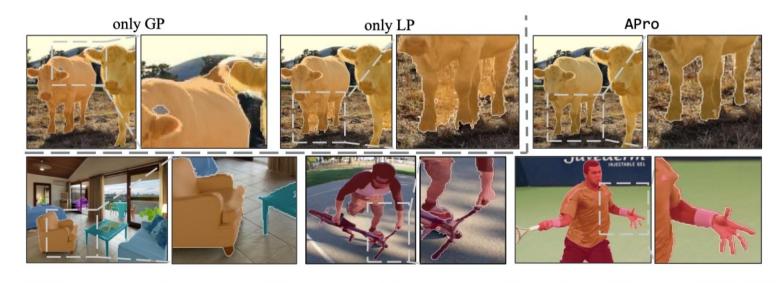
MaskCLIP+

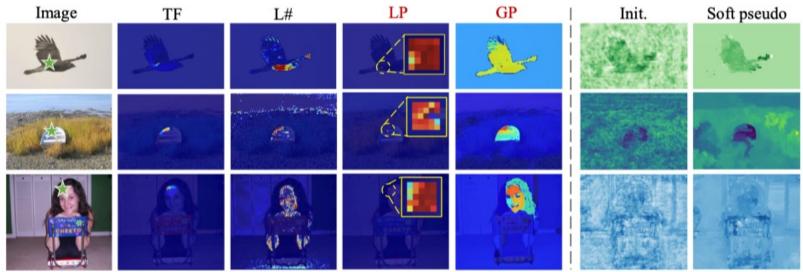
APro(Ours)

MaskCLIP+

APro(Ours)

Visual comparisons





Diagnostic Experiments

Table 4: Effects of unary and pairwise terms.

Unary	Global Pairwise	Local Pairwise	AP	AP_{50}	AP_{75}
\checkmark			25.9	57.0	20.4
1	✓		36.3	63.9	37.0
1		1	36.0	64.3	35.6
1	\checkmark	1	38.4	57.0 63.9 64.3 65.4	39.8

Table 6: Comparisons on localpairwise affinity modeling.

LP(Out	LP(Ours) MeanField		d[10]
Iteration	AP	Iteration	AP
10	35.8	20	35.2
20	36.0	30	35.5
30	35.7	50	35.5
50	35.6	100	35.9

Table 5: Comparisons with tree-based methods.

Method	AP	AP_{50}	AP_{75}
TreeFilter [19]	36.1	63.5	36.1
TreeFilter [19] + Local Pairwise	36.8	64.4	36.5
TreeFilter [19] TreeFilter [19] + Local Pairwise Global + Local Pairwise (Ours)	38.4	65.4	39.8

Table 7: Generation of softpseudo labels.

Method	AP	AP_{50}	AP_{75}
GP-LP-C	36.8	63.7	37.8
LP-GP-C	37.7	65.1	39.1
GP-LP-C LP-GP-C GP-LP-P	38.4	65.4	39.8

04/Takeaways

- We proposed a novel universal component for weakly-supervised segmentation by formulating it as an **affinity propagation process**.
- A global and a local pairwise affinity term were introduced.
- Experiments on three typical label-efficient segmentation tasks proved the effectiveness of APro.
 - box-supervised instance segmentation
 - point/scribblesupervised semantic segmentation
 - CLIP-guided annotation-free semantic segmentation

- Code available: <u>https://github.com/CircleRadon/APro</u>
- Project homepage: <u>https://liwentomng.github.io/apro</u>

