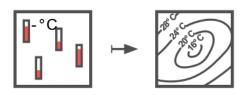
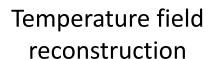


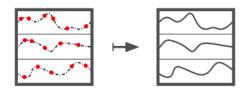
# Accurate Interpolation for Scattered Data through Hierarchical Residual Refinement


Anthors: Shizhe Ding, Boyang Xia, Dongbo Bu


Shizhe Ding Institute of Computing Technology, CAS University of Chinese Academy of Sciences

dingshizhe19s@ict.ac.cn

### Scattered data interpolation

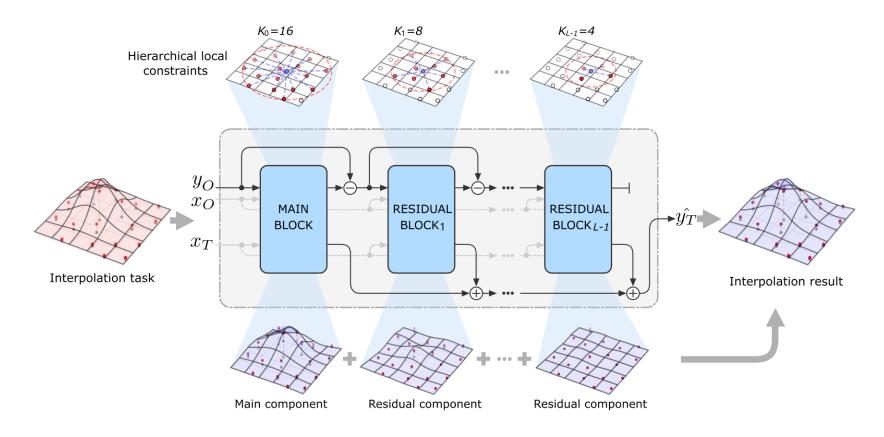

- Given n scattered observed points  $O=\{(x_i,y_i)\}_{i=1}^n$  interpolate O to reconstruct a function f It is assumed that f belongs to a latent function distribution, denoted by  $f\in\mathcal{F}$
- Wide range of application scenarios





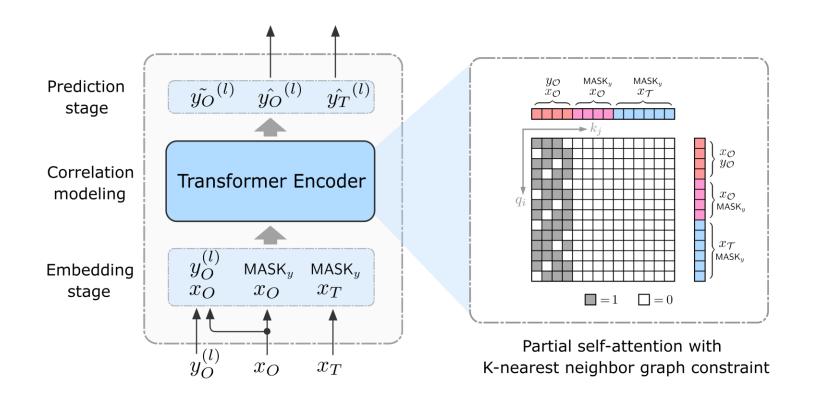


Particle tracking velocimetry




Irregularly-sampled timeseries interpolation

#### Motivation


- Existing neural interpolators neglect the information of interpolation residuals
- The interpolation residuals can be progressively and hierarchically exploited

#### Our Hierarchical INTerpolation framework (HINT)



- 1. Multiple lightweight interpolation block, dual residual linked, utilizing residual of observed points
- 2. Hierarchical local constraint for better refining residual predictions

#### Transformer-based interpolation block



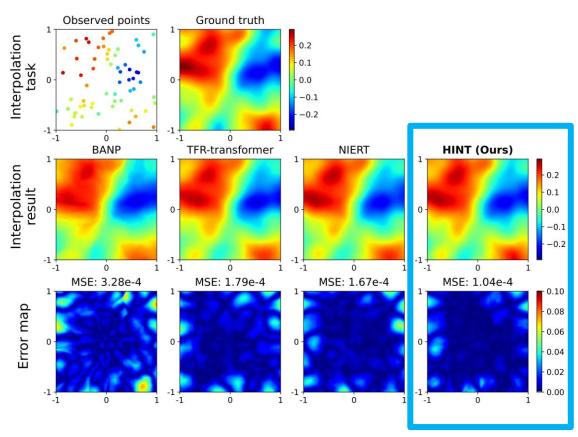
- 1. Masked Transformer encoder for accurate correlation modeling of scattered points
- 2. KNN graph mask as local constraint

#### Results

• SOTA interpolation accuracy on representative datasets

Table 1: Interpolation accuracy on Mathit dataset. Table 2: Interpolation accuracy on Perlin dataset.

| Interpolation approach | MSE $(\times 10^{-4})$ on Mathit-2D test set | Interpolation approach | MSE ( $\times 10^{-5}$ ) on<br>Perlin test set |         |
|------------------------|----------------------------------------------|------------------------|------------------------------------------------|---------|
| CNP                    | 24.868                                       | CNP                    | 48.642                                         |         |
| ANP                    | 14.001                                       | ANP                    | 23.731                                         |         |
| BANP                   | 8.419                                        | BANP                   | 20.737                                         |         |
| TFR-Transformer        | 5.857 <b>V</b> 8.34 %                        | TFR-Transformer        | 12.101                                         | 18.61 % |
| NIERT                  | 3.167                                        | NIERT                  | 7 185                                          |         |
| HINT (ours)            | 2.903                                        | HINT (ours)            | 5.848                                          |         |

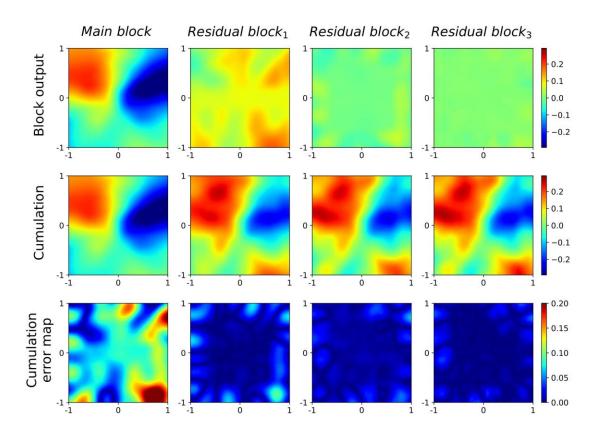

Table 3: Interpolation accuracy on PTV dataset. Table 4: Interpolation accuracy on TFRD dataset.

| Interpolation   | $MSE(\times 10^{-3})$ on              | In      | Interpolation | MAE ( $\times 10^{-3}$ ) on TFRD test set |        |        |                              |
|-----------------|---------------------------------------|---------|---------------|-------------------------------------------|--------|--------|------------------------------|
| approach        | PTV test set                          |         | approach      | HSink                                     | ADlet  | DSine  |                              |
| CNP             | 137.573                               |         | CNP           | 204.351                                   | 91.782 | 92.456 | •                            |
| ANP             | 32.111                                |         | ANP           | 164.491                                   | 54.684 | 58.589 |                              |
| BANP            | 33.585                                |         | BANP          | 59.728                                    | 28.671 | 19.107 |                              |
| TFR-Transformer | $^{17.125}_{5.167}$ $\downarrow$ 32.1 | 2 % TFR | -Transformer  | 64.987                                    | 27.074 | 29.961 | $\downarrow$ 44.96 % on Avg. |
| NIERT           | 5.167                                 | 13 /0   | NIERT         | 23 510                                    | 3 473  | g 785  | V 44.50 /0 OH AVg.           |
| HINT (ours)     | 3.507                                 | H       | INT (ours)    | 13.758                                    | 1.761  | 4.912  |                              |

## Case study and analysis

More accurate interpolation result

• Finer-scaled error map




Qualitative comparison on a 2D interpolation task extracted from Perlin dataset

## Case study and analysis

 Progressively predict of the main function components and interpolation residuals

Decouple the function at different scales



Output from each interpolation block on an interpolation task from Perlin dataset

#### Conclusion

- We introduce HINT, a novel hierarchical framework for scattered point interpolation
- HINT enhances accuracy using coarse-to-fine interpolation blocks and outperforms SOTA methods
- Paper:

https://nips.cc/virtual/2023/poster/72636

• Source code:

https://github.com/DingShizhe/HINT







## **Thanks**



