
Distance-Restricted Folklore Weisfeiler-Leman
GNNs with Provable Cycle Counting Power

Junru Zhou · Jiarui Feng · Xiyuan Wang · Muhan Zhang

Introduction: Cycle counting

• Cycles are important local structures in graphs.
(especially in the context of chemistry!)

Bicyclopentyl Naphthalene

𝐺 𝐻

two 5-cycles and no 6-cycles no 5-cycles and two 6-cycles

Bicyclopentyl Naphthalene

Introduction: Message passing GNNs

• Message passing GNNs (MPNNs) update node representation ℎ! by

𝑓 " , 𝑚 " : learnable functions
⊕: permutation-invariant aggregation function (e.g. sum, mean)
Use a readout layer to encode graph 𝐺:
• MPNNs are not more powerful than WL(1) test. [Xu et al., 2018]

𝐺 𝐻

The difficulty of MPNNs to count cycles

• MPNNs fail to distinguish between 𝐺 and 𝐻.

𝐺 𝐻
0 0

1 1

2 2

3 3

4

4

5

5

6 6

7 7

8 8

9 9

Why MPNNs cannot count cycles?
𝐺
0

1

2

3

4 5

6

7

8

9

𝐻
0

1

2

3

4

5

6

7

8

9

……

Why MPNNs cannot count cycles?

……

connected?

connected?

MPNNs cannot answer
either question, since
they only encode
information of the local
subtree.

𝐻
0

1

2

3

4

5

6

7

8

9

𝐺
0

1

2

3

4 5

6

7

8

9

(Both no for 𝐺 and 𝐻)

(yes for 𝐺 but no for 𝐻)
a b

dc

Introduction: FWL(2) test

• FWL(2) test assigns a color 𝑊 𝑢, 𝑣 for every 2-tuple 𝑢, 𝑣 ∈ 𝒱#$,

Initialize: Give a unique color for three different cases, (i) 𝑢 = 𝑣, (ii)
𝑢, 𝑣 connected, and (iii) 𝑢, 𝑣 not connected.
Update:
𝑊 " 𝑢, 𝑣

= HASH "
𝑊 "%& 𝑢, 𝑣 ,

POOL " 𝑊 "%& 𝑢,𝑤 ,𝑊 "%& 𝑤, 𝑣 :𝑤 ∈ 𝒱#
Readout:𝑊 ' 𝐺 = READOUT 𝑊 ' 𝑢, 𝑣 : 𝑢, 𝑣 ∈ 𝒱#$

𝑂 𝑛! space

𝑂 𝑛" time

Can FWL(2) test count cycles?

• FWL(2) test can count 3-cycles.

• Actually, FWL(2) can simulate the following procedure

Procedure: Count 3-cycles that passes nodes 𝑢 and 𝑣.

if not (𝑢 and 𝑣 are connected):
return 0

else:
return (# of 𝑤 such that both 𝑢,𝑤 and 𝑤, 𝑣 are connected)

Definitions of cycle counting

• Graph-level counts:

• Node-level counts:

• Pair-level counts:

#(5-cycle) = 2, #(6-cycle) = 0 #(5-cycle) = 0, #(6-cycle) = 2

2

2

1

1

1
1

1
11

1

#(6-cycle passing 𝑢) = 2
#(6-cycle passing 𝑣) = 1

𝑢
𝑣

𝑢

𝑣
𝑤

#(6-cycle passing 𝑢, 𝑣) = 1
#(6-cycle passing 𝑢, 𝑤) = 0

Can FWL(2) test count cycles?

• FWL(2) counts cycles by counting closed walks!
• Take the example of counting 6-cycles.

𝑢 𝑣

𝑦

𝑧

𝑥

𝑡

𝑤

𝑠

𝑞

#(2-walk 𝑢 → 𝑤) = 1
#(2-walk 𝑤 → 𝑣) = 1
#(2-walk 𝑢 → 𝑣) = 2

#(6-closed walk 𝑢 → 𝑤 → 𝑣 → 𝑢) = 1*1*2 = 2

sum over all possible 𝑤

#(6-closed walk 𝑢 → ⋯ → 𝑣 → 𝑢) =
2 + 2 + 12 + 16 + 2 + 0 + 2 + 0 + 0 = 36

remove non-cycles

#(6-cycle passing 𝑢, 𝑣) = 3

Can be done by FWL(2)!

𝑢 𝑣

𝑤

𝑊
𝑢,
𝑤

𝑊
𝑤
, 𝑣

𝑊 𝑢, 𝑣

concat

ag
gr
eg
at
e

ov
er
𝑤

of ℓ!-walks 𝑢 → 𝑤

…
…

𝑊 𝑢,𝑤 =
of ℓ"-walks 𝑤 → 𝑣𝑊 𝑤, 𝑣 =

…
…

of ℓ#-walks 𝑢 → 𝑣

…
…

𝑊 𝑢, 𝑣 = knows # of closed
ℓ𝟏 + ℓ𝟐 + ℓ𝟑 -walks
passing 𝑢 and 𝑣!

The key limitation is whether
FWL(2) can detect non-cycle
closed walks. The number of
such walks grows quickly as
cycles become longer.

FWL(2) can only count up to
7-cycles at node level.

Why FWL(2) can count cycles?

• Basically, two features are important for the cycle counting power of
FWL(2):
• 1. use 2-tuple (instead of nodes) as the basis of message passing
• 2. use the walk-like update rule

• It is possible to design more efficient algorithms than FWL(2) but
keep (almost) all of its counting power, as long as these two features
are kept.

The “local” nature of cycle counting

• Consider the following algorithm to count 3-cycles.

• We notice that even if all tuples 𝑢, 𝑣 with 𝑑 𝑢, 𝑣 > 1 are ignored in
FWL(2) update, we can still calculate the count.

Procedure: Count 3-cycles that passes nodes 𝑢 and 𝑣.

if not (𝑢 and 𝑣 are connected):
return 0

else:
return (# of 𝑤 such that both 𝑢,𝑤 and 𝑤, 𝑣 are connected)

The “local” nature of cycle counting

• Namely, if we modify the update rule of FWL(2) to

if 𝑑 𝑢, 𝑣 = 1, then
𝑊 " 𝑢, 𝑣 =

HASH "
𝑊 "%& 𝑢, 𝑣 ,

POOL " 𝑊 "%& 𝑢,𝑤 ,𝑊 "%& 𝑤, 𝑣 :𝑤 ∈ 𝒩& 𝑢 ∩𝒩& 𝑣
else
𝑊 " 𝑢, 𝑣 = 0
• Then the ability to count 3-cycle is retained.

The “local” nature of cycle counting

• Similarly, if we modify the update rule of FWL(2) to

if 𝑑 𝑢, 𝑣 ≤ 2, then
𝑊 " 𝑢, 𝑣 =

HASH "
𝑊 "%& 𝑢, 𝑣 ,

POOL " 𝑊 "%& 𝑢,𝑤 ,𝑊 "%& 𝑤, 𝑣 : 𝑑 𝑢, 𝑤 , 𝑑 𝑤, 𝑣 ≤ 2
else
𝑊 " 𝑢, 𝑣 = 0
• Then the abilities to node-level count 3, 4, 5, 6-cycle are all retained.

𝑑-Distance Restricted FWL(2) tests

• We propose 𝒅-Distance Restricted FWL(2) tests, or 𝒅-DRFWL(2) tests
as following. Different from FWL(2), 𝑑-DRFWL(2) test assigns a color
only to all 𝑢, 𝑣 ∈ 𝒱#$ that satisfies 0 ≤ 𝑑 𝑢, 𝑣 ≤ 𝑑.

Initialize: Give a unique color for 𝑑 + 1 different cases, (i) 𝑑 𝑢, 𝑣 =
0, or 𝑢 = 𝑣, (ii) 𝑑 𝑢, 𝑣 = 1, (iii) 𝑑 𝑢, 𝑣 = 2, …

Note: We remark that this step can be unnecessary. One can still adopt the FWL(2)
initialization (only considering three cases, coinciding, connected or disconnected),
and use the update rule to generate distance encoding.

𝑑-Distance Restricted FWL(2) tests

Update:

𝑑-Distance Restricted FWL(2) tests

Readout:

𝑑-DRFWL(2) GNNs

• 𝑑-DRFWL(2) GNNs are neural versions of 𝑑-DRFWL(2) tests.

Initialize: generate
Update in each layer:

𝑑-DRFWL(2) GNNs

• Network structure:

𝐿&, … , 𝐿,: 𝑑-DRFWL(2) GNN layers
𝜎&, … , 𝜎,%&: activation functions
𝑅: readout layer, giving the representation of 𝐺 from the multiset

𝑀: MLP

Discussion on 𝑑-DRFWL(2) tests

• 𝑑-DRFWL(2) test has a finite range of reception.
• Actually, 𝑑-DRFWL(2) tests cannot detect any 3𝑑 + 1 -cycle in a

graph, while using a larger 𝑑 may make it possible.

Comparison with the WL hierarchy

Cycle counting power of 𝑑-DRFWL(2) GNNs

• 1-DRFWL(2) GNNs can node-level count up to 3-cycles, but cannot
graph-level count more than 4-cycles.
• 2-DRFWL(2) GNNs can node-level count up to 6-cycles, but cannot
graph-level count more than 7-cycles.
• 𝒅-DRFWL(2) GNNs with 𝒅 > 𝟐 can node-level count up to 7-cycles,

but cannot graph-level count more than 8-cycles.

• Notice that 3-DRFWL(2) GNNs already possess equal cycle counting
power to FWL(2).

Complexity analysis
Method Cycle counting power Space Time

2-DRFWL(2)
GNN Up to 6-cycle at node level 𝑂 𝑛 deg! 𝑂 𝑛 deg"

𝑑-DRFWL(2)
GNNs 𝑑 ≥ 3 Up to 7-cycle at node level 𝑂 𝑛 deg# 𝑂 𝑛 deg!#

I2-GNN Up to 6-cycle at node level,
w/ subgraph height 𝑘 ≥ 3

at least
𝑂 𝑛 deg"

at least
𝑂 𝑛 deg$

FWL(2)-based
GNNs Up to 7-cycle at node level 𝑂 𝑛! 𝑂 𝑛%

Experiments

Node-level cycle (& substructure)
counting on synthetic datasets

Experiments

Performance
on real-world
datasets

Experiments
Efficiency & scalability

Notice: for datasets with large average
degree (e.g. ogbg-ppa), our method
will be slow (especially the
preprocessing).

QM9: !𝑛 = 18.0,)𝑚 = 18.7
ogbg-molhiv: !𝑛 = 25.5,)𝑚 =
27.5

ProteinsDB: !𝑛 = 475.9,)𝑚 =
714.8
HomologyTAPE: !𝑛 =
167.3,)𝑚 = 256.7

Thanks!

Paper ID: 8038
arXiv: 2309.04941 [cs.LG]
Code: https://github.com/zml72062/DR-FWL-2

Our arXiv link

