Distance-Restricted Folklore Weisfeiler-Leman GNNs with Provable Cycle Counting Power

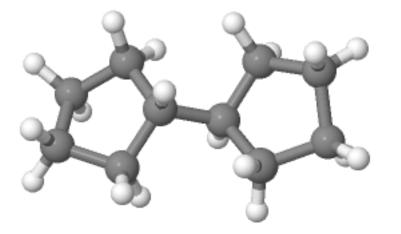
Junru Zhou · Jiarui Feng · Xiyuan Wang · Muhan Zhang

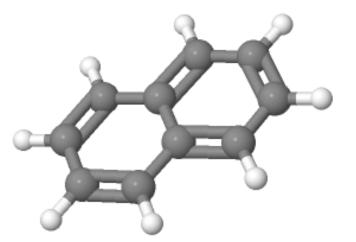
Introduction: Cycle counting

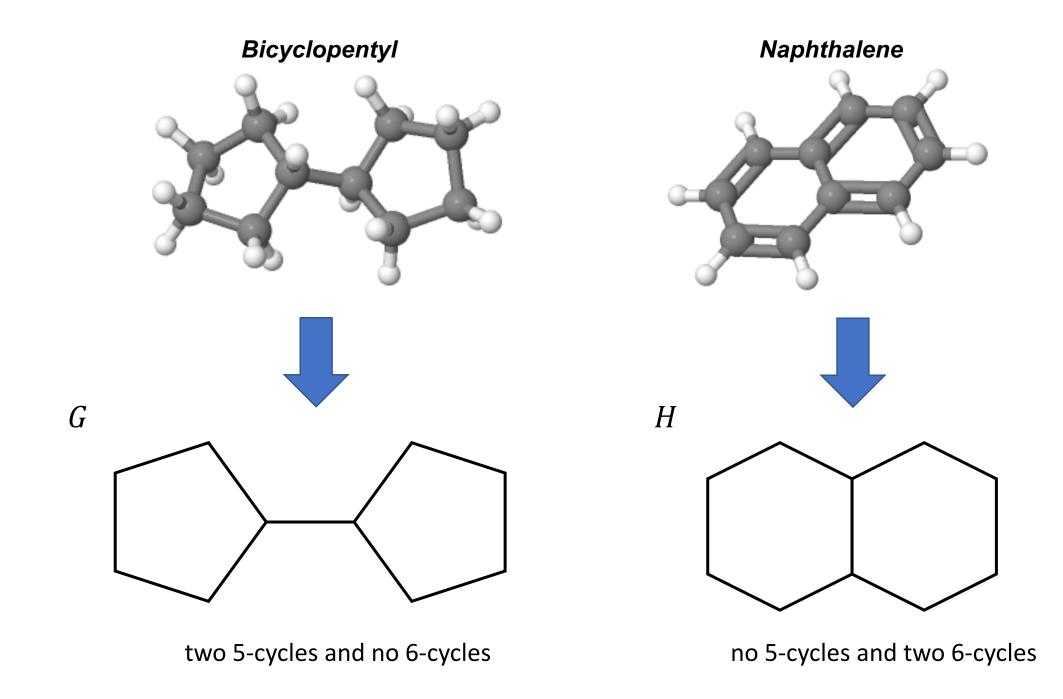
• Cycles are important local structures in graphs. (*especially in the context of chemistry*!)

Bicyclopentyl

Naphthalene







Introduction: Message passing GNNs

• Message passing GNNs (MPNNs) update node representation h_u by

$$h_u^{(t)} = f^{(t)} \left(h_u^{(t-1)}, \bigoplus_{v \in \mathcal{N}(u)} m^{(t)} \left(h_u^{(t-1)}, h_v^{(t-1)}, e_{uv} \right) \right)$$

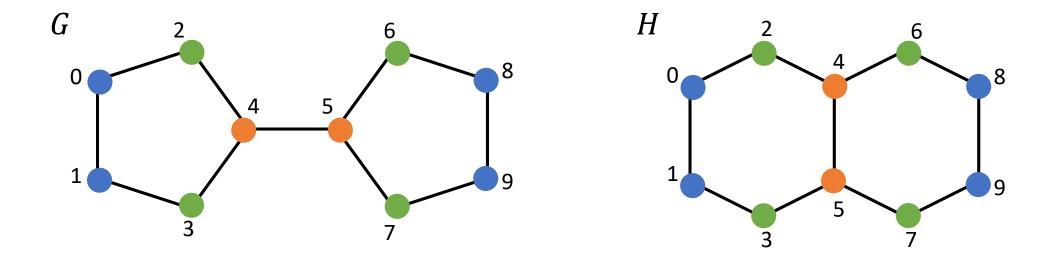
 $f^{(t)}$, $m^{(t)}$: learnable functions

 \oplus : permutation-invariant aggregation function (e.g. sum, mean) Use a readout layer to encode graph G: $h_G = R(\{\!\!\{h_u : u \in \mathcal{V}_G\}\!\!\}),$

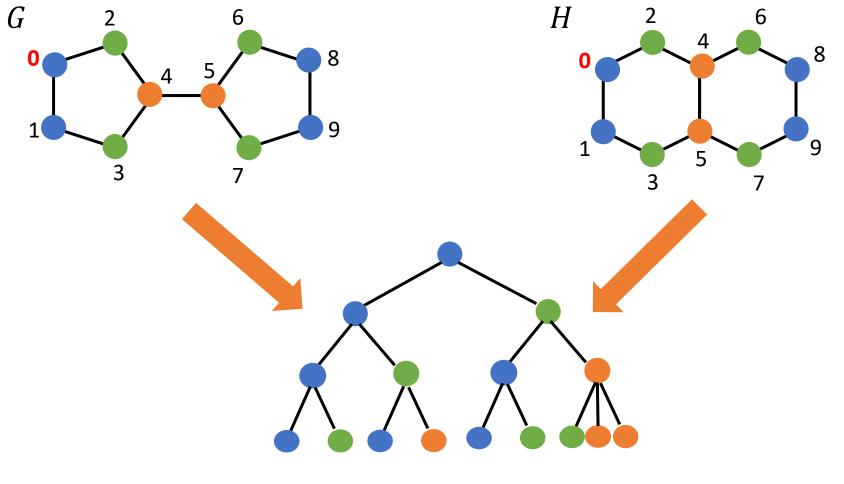
• MPNNs are not more powerful than WL(1) test. [Xu et al., 2018] $W^{(t)}(v) = \mathrm{HASH}^{(t)}\left(W^{(t-1)}(v), \mathrm{POOL}^{(t)}\left(\{\!\!\{W^{(t-1)}(u) : u \in \mathcal{N}(v)\}\!\!\}\right)\right)$

The difficulty of MPNNs to count cycles

• MPNNs fail to distinguish between G and H.

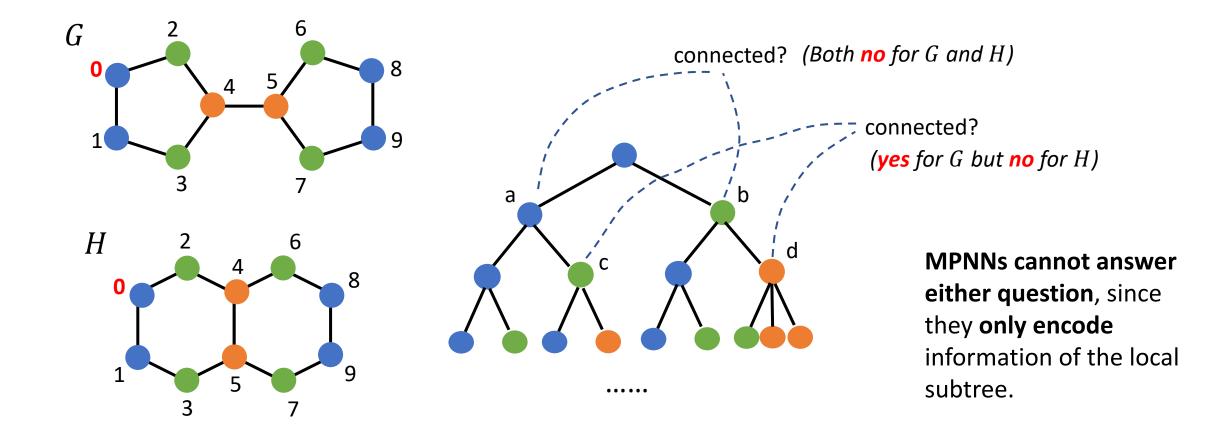


Why MPNNs cannot count cycles?



.....

Why MPNNs cannot count cycles?



Introduction: FWL(2) test

• FWL(2) test assigns a color W(u, v) for every **2-tuple** $(u, v) \in \mathcal{V}_{G}^{2}$,

 $O(n^2)$ space

Initialize: Give a unique color for three different cases, (i) u = v, (ii) u, v connected, and (iii) u, v not connected.

Update:

$$W^{(t)}(u, v) = HASH^{(t)} \left(W^{(t-1)}(u, v), W^{(t-1)}(w, v) : w \in \mathcal{V}_G \right) \right)$$
Readout: $W^{(\infty)}(G) = READOUT([[W^{(\infty)}(u, v): (u, v) \in \mathcal{V}_G^2]])$

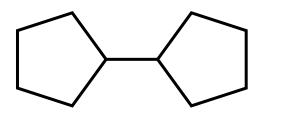
Can FWL(2) test count cycles?

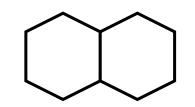
- FWL(2) test can count 3-cycles.
- Actually, FWL(2) can simulate the following procedure

```
Procedure: Count 3-cycles that passes nodes u and v.
if not (u and v are connected):
    return 0
else:
    return (# of w such that both u,w and w,v are connected)
```

Definitions of cycle counting

• Graph-level counts:





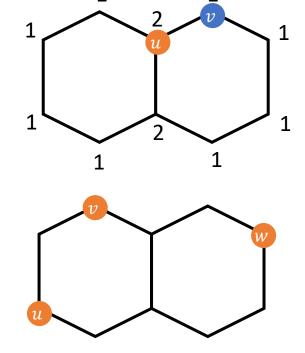
#(5-cycle) = 2, #(6-cycle) = 0

#(5-cycle) = 0, #(6-cycle) = 2

• Node-level counts:

#(6-cycle passing u) = 2 #(6-cycle passing v) = 1

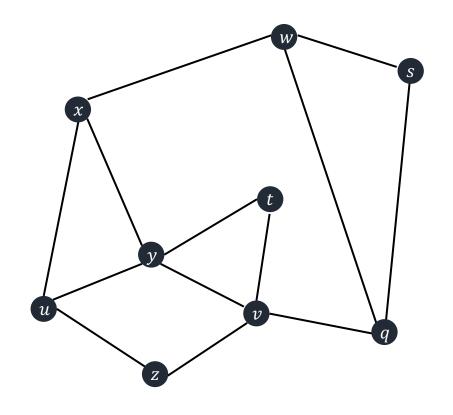
• Pair-level counts:

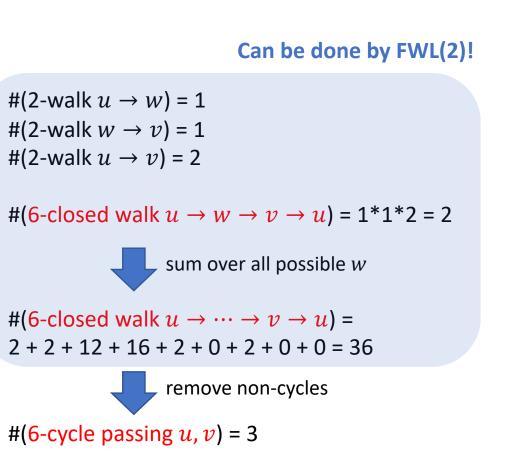


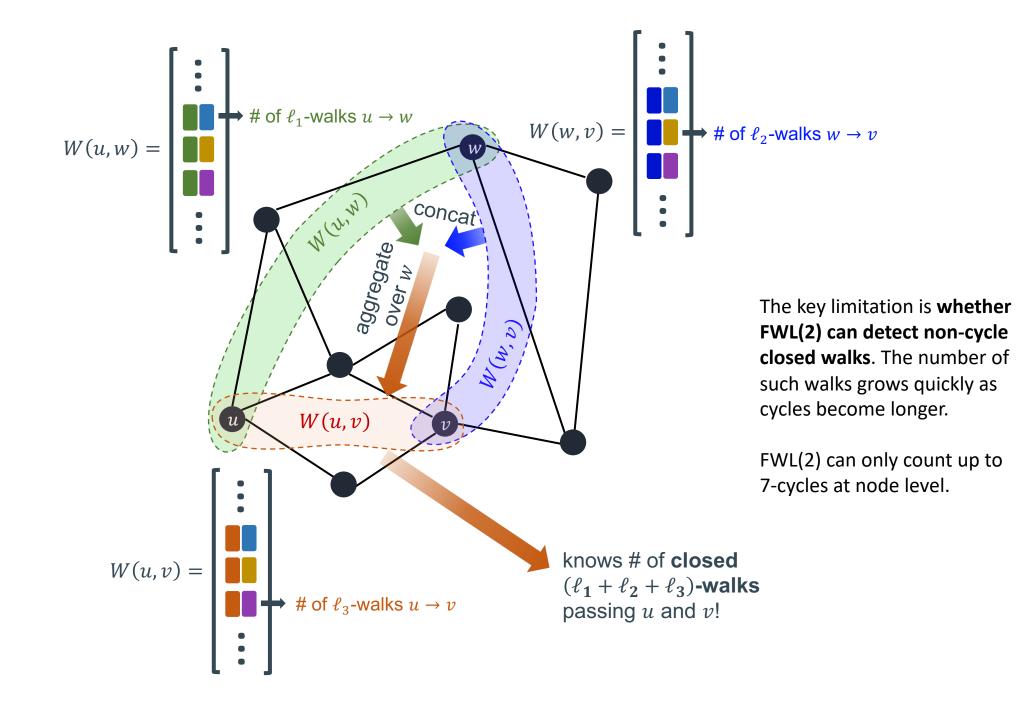
#(6-cycle passing u, v) = 1 #(6-cycle passing u, w) = 0

Can FWL(2) test count cycles?

- FWL(2) counts cycles by counting closed walks!
- Take the example of counting 6-cycles.







Why FWL(2) can count cycles?

- Basically, two features are important for the cycle counting power of FWL(2):
- 1. use 2-tuple (instead of nodes) as the basis of message passing
- 2. use the *walk-like* update rule
- It is possible to design more efficient algorithms than FWL(2) but keep (almost) all of its counting power, as long as these two features are kept.

The "local" nature of cycle counting

• Consider the following algorithm to count 3-cycles.

```
Procedure: Count 3-cycles that passes nodes u and v.
if not (u and v are connected):
    return 0
else:
    return (# of w such that both u,w and w,v are connected)
```

• We notice that even if all tuples (u, v) with d(u, v) > 1 are ignored in FWL(2) update, we can still calculate the count.

The "local" nature of cycle counting

• Namely, if we modify the update rule of FWL(2) to

if
$$d(u, v) = 1$$
, then
 $W^{(t)}(u, v) = W^{(t-1)}(u, v),$
HASH^(t)
 $\left(POOL^{(t)} \left(\left[\left(W^{(t-1)}(u, w), W^{(t-1)}(w, v) \right) : w \in \mathcal{N}_1(u) \cap \mathcal{N}_1(v) \right] \right) \right)$
else

 $W^{(t)}(u,v)=0$

• Then the ability to count 3-cycle is retained.

The "local" nature of cycle counting

• Similarly, if we modify the update rule of FWL(2) to

if
$$d(u, v) \le 2$$
, then
 $W^{(t)}(u, v) = W^{(t-1)}(u, v),$
HASH^(t) $\left(POOL^{(t)} \left(\left[\left(W^{(t-1)}(u, w), W^{(t-1)}(w, v) \right) : d(u, w), d(w, v) \le 2 \right] \right) \right)$
else

 $W^{(t)}(u,v)=0$

• Then the abilities to node-level count 3, 4, 5, 6-cycle are all retained.

d-Distance Restricted FWL(2) tests

• We propose *d*-Distance Restricted FWL(2) tests, or *d*-DRFWL(2) tests as following. Different from FWL(2), *d*-DRFWL(2) test assigns a color only to all $(u, v) \in \mathcal{V}_{G}^{2}$ that satisfies $0 \leq d(u, v) \leq d$.

Initialize: Give a unique color for (d + 1) different cases, (i) d(u, v) = 0, or u = v, (ii) d(u, v) = 1, (iii) d(u, v) = 2, ...

Note: We remark that this step can be unnecessary. One can still adopt the FWL(2) initialization (only considering three cases, coinciding, connected or disconnected), and use the update rule to generate distance encoding.

d-Distance Restricted FWL(2) tests

Update:

For each
$$k = 0, 1, \dots, d$$
,
 $W^{(t)}(u, v) = \text{HASH}_k^{(t)} \left(W^{(t-1)}(u, v), \left(M_{ij}^{k(t)}(u, v) \right)_{0 \le i, j \le d} \right), \text{ if } d(u, v) = k,$ (6)

where $\text{HASH}_{k}^{(t)}$ is an injective hashing function for distance k and iteration t, and $M_{ij}^{k(t)}(u, v)$ is defined as

$$M_{ij}^{k(t)}(u,v) = \text{POOL}_{ij}^{k(t)} \left(\left\{ \left(W^{(t-1)}(w,v), W^{(t-1)}(u,w) \right) : w \in \mathcal{N}_i(u) \cap \mathcal{N}_j(v) \right\} \right\} \right).$$
(7)
The symbol $\left(M_{ij}^{k(t)}(u,v) \right)_{0 \leq i,j \leq d}$ stands for $\left(M_{00}^{k(t)}(u,v), M_{01}^{k(t)}(u,v), \dots, M_{0d}^{k(t)}(u,v), \dots, M_{0d}^{k(t)}(u,v) \right).$ Each of the $\text{POOL}_{ij}^{k(t)}$ with $0 \leq i, j, k \leq d$ is an injective multiset hashing function.

d-Distance Restricted FWL(2) tests

Readout:

$$W(G) = \operatorname{READOUT}\left(\{\!\!\{ W^{(\infty)}(u, v) : (u, v) \in \mathcal{V}_G^2 \text{ and } 0 \leq d(u, v) \leq d \}\!\!\} \right).$$

d-DRFWL(2) GNNs

• *d*-DRFWL(2) GNNs are neural versions of *d*-DRFWL(2) tests.

Initialize: generate *initial labeling* $h_{uv}^{(0)}, 0 \leq d(u, v) \leq d$. **Update in each layer:** For each k = 0, 1, ..., d,

$$\begin{aligned} \text{For each } (u,v) \in \mathcal{V}_G^2 \text{ with } d(u,v) &= k, \\ a_{uv}^{ijk(t)} &= \bigoplus_{w \in \mathcal{N}_i(u) \cap \mathcal{N}_j(v)} m_{ijk}^{(t)} \left(h_{wv}^{(t-1)}, h_{uw}^{(t-1)} \right), \\ h_{uv}^{(t)} &= f_k^{(t)} \left(h_{uv}^{(t-1)}, \left(a_{uv}^{ijk(t)} \right)_{0 \leqslant i,j \leqslant d} \right), \end{aligned}$$

d-DRFWL(2) GNNs

• Network structure:

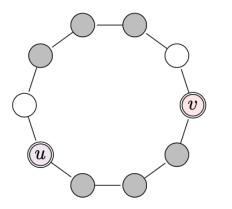
$$f = M \circ R \circ L_T \circ \sigma_{T-1} \circ \cdots \circ \sigma_1 \circ L_1.$$

 $L_1, \dots, L_T: d\text{-DRFWL}(2) \text{ GNN layers}$ $\sigma_1, \dots, \sigma_{T-1}: \text{ activation functions}$ R: readout layer, giving the representation of G from the multiset $\{\!\{h_{uv}^{(T)} : (u, v) \in \mathcal{V}_G^2 \text{ and } 0 \leq d(u, v) \leq d\}\!\}$

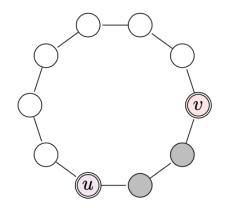
 $M: \mathsf{MLP}$

Discussion on d-DRFWL(2) tests

- *d*-DRFWL(2) test has a **finite** range of reception.
- Actually, d-DRFWL(2) tests cannot detect any (3d + 1)-cycle in a graph, while using a larger d may make it possible.



(a) When running 4-DRFWL(2) in a 10-cycle, there are 8 (marked as colored, with 3 on the inferior arc and 3 on the superior arc) nodes contributing to the update of any distance-4 tuple (u, v)



(b) When running 3-DRFWL(2) in a 10-cycle (or any cycle with length ≥ 10), there are only 4 (marked as colored) nodes contributing to the update of any distance-3 tuple (u, v)

Comparison with the WL hierarchy

Theorem 3.1. In terms of the ability to distinguish between non-isomorphic graphs, the d-DRFWL(2) test is strictly more powerful than WL(1), for any $d \ge 1$.

Theorem 3.2. In terms of the ability to distinguish between non-isomorphic graphs, FWL(2) is strictly more powerful than d-DRFWL(2), for any $d \ge 1$. Moreover, (d + 1)-DRFWL(2) is strictly more powerful than d-DRFWL(2).

Cycle counting power of d-DRFWL(2) GNNs

- 1-DRFWL(2) GNNs can node-level count up to 3-cycles, but cannot graph-level count more than 4-cycles.
- 2-DRFWL(2) GNNs can node-level count up to 6-cycles, but cannot graph-level count more than 7-cycles.
- *d*-DRFWL(2) GNNs with *d* > 2 can node-level count up to 7-cycles, but cannot graph-level count more than 8-cycles.
- Notice that 3-DRFWL(2) GNNs already possess equal cycle counting power to FWL(2).

Complexity analysis

Method	Cycle counting power	Space	Time		
2-DRFWL(2) GNN	Up to 6-cycle at node level	$O(n \deg^2)$	$O(n \deg^4)$		
d-DRFWL(2) GNNs ($d \ge 3$)	Up to 7-cycle at node level	$O(n \deg^d)$	$O(n \deg^{2d})$		
I ² -GNN	Up to 6-cycle at node level, w/ subgraph height $k \ge 3$	at least $O(n \text{ deg}^4)$	at least $O(n \text{ deg}^5)$		
FWL(2)-based GNNs	Up to 7-cycle at node level	$O(n^2)$	$O(n^{3})$		

Experiments

Table 1: Normalized MAE results of node-level counting cycles and other substructures on synthetic dataset. The colored cell means an error less than 0.01.

Method	Synthetic (norm. MAE)								
	3-Cyc.	4-Cyc.	5-Cyc.	6-Cyc.	Tail. Tri.	Chor. Cyc.	4-Cliq.	4-Path	TriRect.
MPNN	0.3515	0.2742	0.2088	0.1555	0.3631	0.3114	0.1645	0.1592	0.2979
ID-GNN	0.0006	0.0022	0.0490	0.0495	0.1053	0.0454	0.0026	0.0273	0.0628
NGNN	0.0003	0.0013	0.0402	0.0439	0.1044	0.0392	0.0045	0.0244	0.0729
GNNAK+	0.0004	0.0041	0.0133	0.0238	0.0043	0.0112	0.0049	0.0075	0.1311
PPGN	0.0003	0.0009	0.0036	0.0071	0.0026	0.0015	0.1646	0.0041	0.0144
I ² -GNN	0.0003	0.0016	0.0028	0.0082	0.0011	0.0010	0.0003	0.0041	0.0013
2-DRFWL(2) GNN	0.0004	0.0015	0.0034	0.0087	0.0030	0.0026	0.0009	0.0081	0.0070

Table 2: Normalized MAE results of node-level counting k-cycles $(3 \le k \le 7)$ on synthetic dataset.

Method	Synthetic (norm. MAE)						
	3-Cyc.	4-Cyc.	5-Cyc.	6-Cyc.	7-Cyc.		
2-DRFWL(2) GNN	0.0004	0.0015	0.0034	0.0087	0.0362		
3-DRFWL(2) GNN	0.0006	0.0020	0.0047	0.0099	0.0176		

Node-level cycle (& substructure) counting on synthetic datasets

Table 3: MAE results on QM9 (smaller the better). The top two are highlighted as **First**, **Second**.

			-	•	,	-		00	
	Target	1-GNN	1-2-3-GNN	DTNN	Deep LRP	PPGN	NGNN	I ² -GNN	2-DRFWL(2) GNN
	μ	0.493	0.476	0.244	0.364	0.231	0.428	0.428	0.346
Evnorimonto	lpha	0.78	0.27	0.95	0.298	0.382	0.29	0.230	0.222
Experiments	$arepsilon_{ ext{homo}}$	0.00321	0.00337	0.00388	0.00254	0.00276	0.00265	0.00261	0.00226
I	$arepsilon_{ ext{lumo}}$	0.00355	0.00351	0.00512	0.00277	0.00287	0.00297	0.00267	0.00225
	$\Delta arepsilon$	0.0049	0.0048	0.0112	0.00353	0.00406	0.0038	0.0038	0.00324
	R^2	34.1	22.9	17.0	19.3	16.07	20.5	18.64	15.04
	ZPVE	0.00124	0.00019	0.00172	0.00055	0.0064	0.0002	0.00014	0.00017
	U_0	2.32	0.0427	2.43	0.413	0.234	0.295	0.211	0.156
	U^{-}	2.08	0.111	2.43	0.413	0.234	0.361	0.206	0.153
	H	2.23	0.0419	2.43	0.413	0.229	0.305	0.269	0.145
	G	1.94	0.0469	2.43	0.413	0.238	0.489	0.261	0.156
	C_v	0.27	0.0944	2.43	0.129	0.184	0.174	0.0730	0.0901

Table 8: Ten-runs MAE results on ZINC-12K (smaller the better), four-runs MAE results on ZINC-250K (smaller the better), ten-runs ROC-AUC results on ogbg-molhiv (larger the better), and four-runs AP results on ogbg-molpcba (larger the better). The * indicates the model uses virtual node on ogbg-molhiv and ogbg-molpcba.

Method	ZINC-12K (MAE)	ZINC-250K (MAE)	ogbg-molhiv (AUC)	ogbg-molpcba (AP)
GIN*	$0.163 {\pm} 0.004$	$0.088 {\pm} 0.002$	$77.07 {\pm} 1.49$	$27.03 {\pm} 0.23$
PNA	$0.188 {\pm} 0.004$	_	$79.05 {\pm} 1.32$	$28.38 {\pm} 0.35$
DGN	$0.168 {\pm} 0.003$	_	$79.70 {\pm} 0.97$	$28.85 {\pm} 0.30$
HIMP	$0.151 {\pm} 0.006$	$0.036 {\pm} 0.002$	$78.80 {\pm} 0.82$	_
GSN	$0.115 {\pm} 0.012$	_	$80.39 {\pm} 0.90$	_
Deep LRP	_	_	$77.19 {\pm} 1.40$	_
CIN-small	$0.094 {\pm} 0.004$	$0.044 {\pm} 0.003$	$80.05 {\pm} 1.04$	_
CIN	$0.079 {\pm} 0.006$	0.022 ± 0.002	80.94 ± 0.57	_
Nested GIN*	$0.111 {\pm} 0.003$	$0.029 {\pm} 0.001$	$78.34{\pm}1.86$	$28.32 {\pm} 0.41$
GNNAK+	$0.080 {\pm} 0.001$	_	$79.61 {\pm} 1.19$	29.30 ±0.44
SUN (EGO)	$0.083 {\pm} 0.003$	_	$80.03 {\pm} 0.55$	_
I ² -GNN	$0.083 {\pm} 0.001$	$0.023 {\pm} 0.001$	$78.68 {\pm} 0.93$	_
d-DRFWL(2) GNN	0.077 ±0.002	$0.025 {\pm} 0.003$	$78.18 {\pm} 2.19$	$25.38 {\pm} 0.19$

Performance on real-world datasets

Experiments

Efficiency & scalability

NGNN

I²-GNN

PPGN

2-DRFWL(2) GNN

 $167.3, \bar{m} = 256.7$

Notice: for datasets with large average degree (e.g. ogbg-ppa), our method will be slow (especially the preprocessing).

Table 4. Empirical efficiency of 2-DREWI (2) GNN

2.763

OOM

OOM

3.809

8.44

21.97

OOM

3.82

1480.7

3173.6

243.8

2909.3

15.249

38.201

OOM

30.687

	Table 4. Empirical eniciency of 2-DRF w L(2) GNN.									
QM9: $\bar{n} = 18.0$, $\bar{m} = 18.7$ ogbg-molhiv: $\bar{n} = 25.5$, $\bar{m} =$	Method		QM9		ogbg-molhiv					
		Memory (GB)	Pre. (s)	Train (s/epoch)	Memory (GB)	Pre. (s)	Train (s/epoch)			
	MPNN	2.28	64	45.3	2.00	2.4	18.8			
27.5	NGNN	13.72	2354	107.8	5.23	1003	42.7			
	I ² -GNN	19.69	5287	209.9	11.07	2301	84.3			
	2-DRFWL(2) GNN	2.31	430	141.9	4.44	201	44.3			
	Table 14: Empirica method takes an am	•			C ,	sets. "OC	M" means the			
ProteinsDB: $\bar{n} = 475.9$, $\bar{m} =$	Method	Prot		3	HomologyTAPE		.ее			
714.8		Memory (GB)	Pre. (s)	Train (s/epoch)	Memory (GB)	Pre. (s)	Train (s/epoch)			
HomologyTAPE: $\bar{n} =$	MPNN	2.60	235.7	0.597	1.99	243.8	5.599			

16.94

OOM

OOM

8.11

941.8

1293.4

235.7

1843.7

Thanks!

Paper ID: 8038 arXiv: 2309.04941 [cs.LG] Code: <u>https://github.com/zml72062/DR-FWL-2</u>

