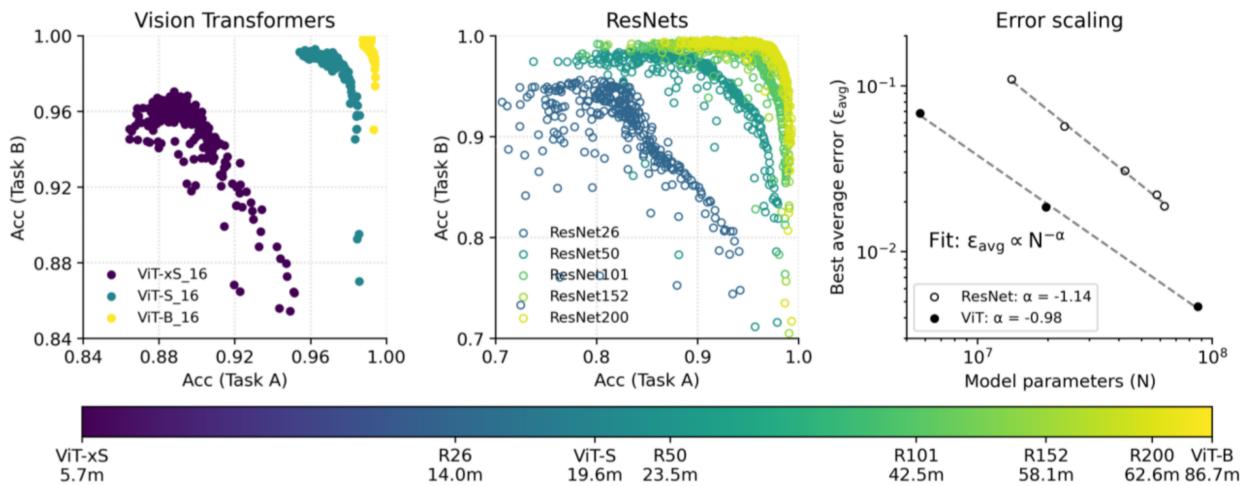
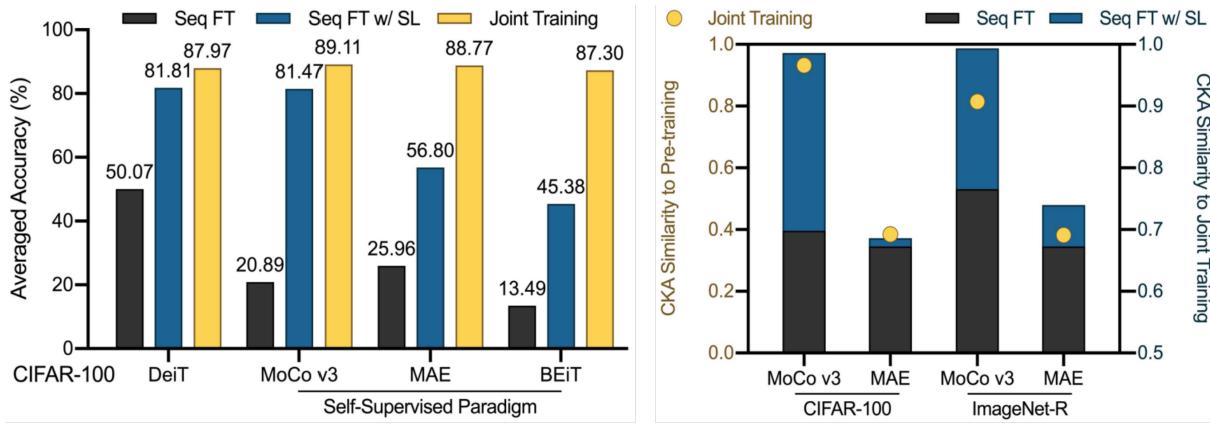
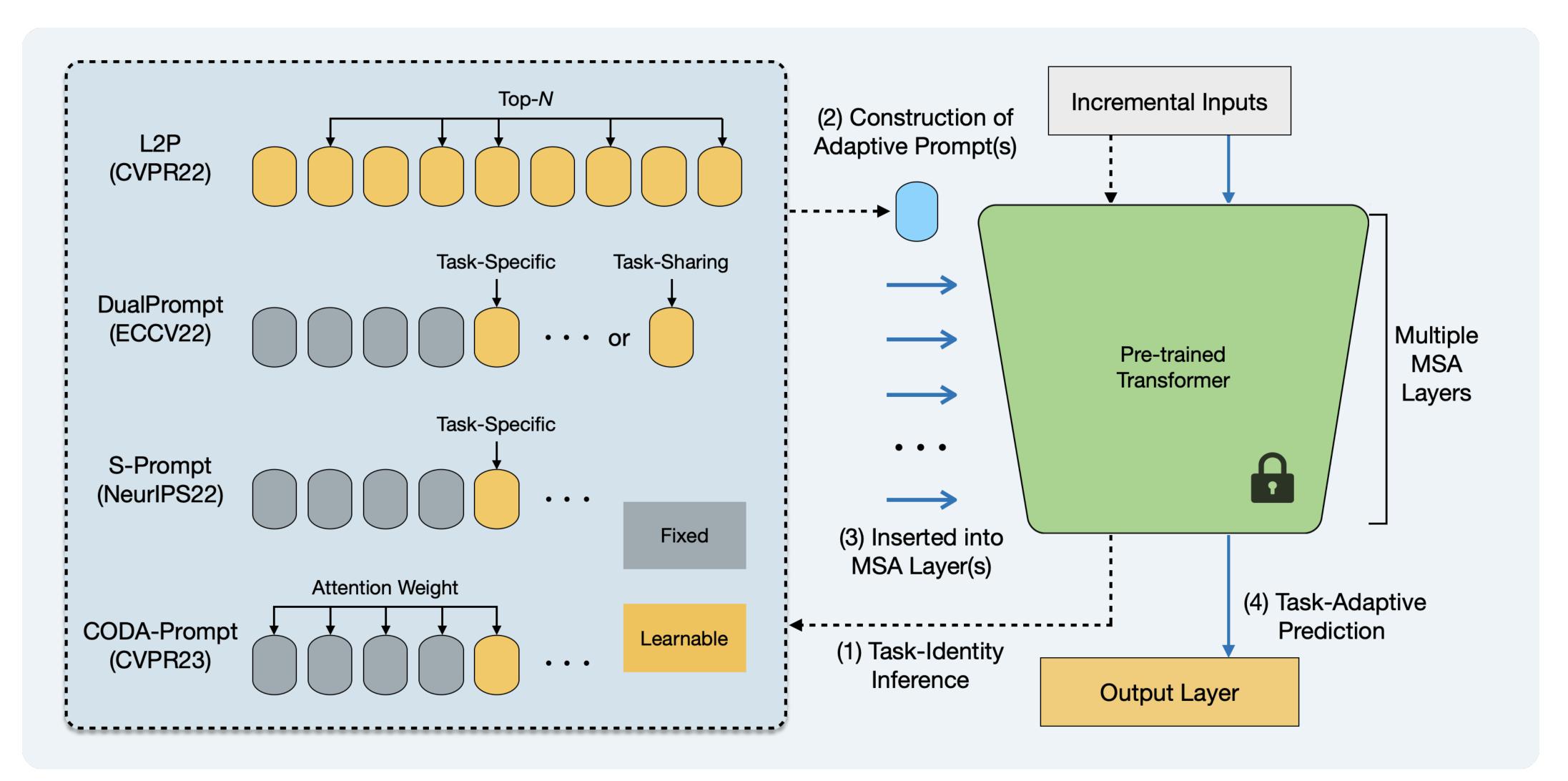

Hierarchical Decomposition of Prompt-Based Continual Learning: Rethinking Obscured Sub-optimality

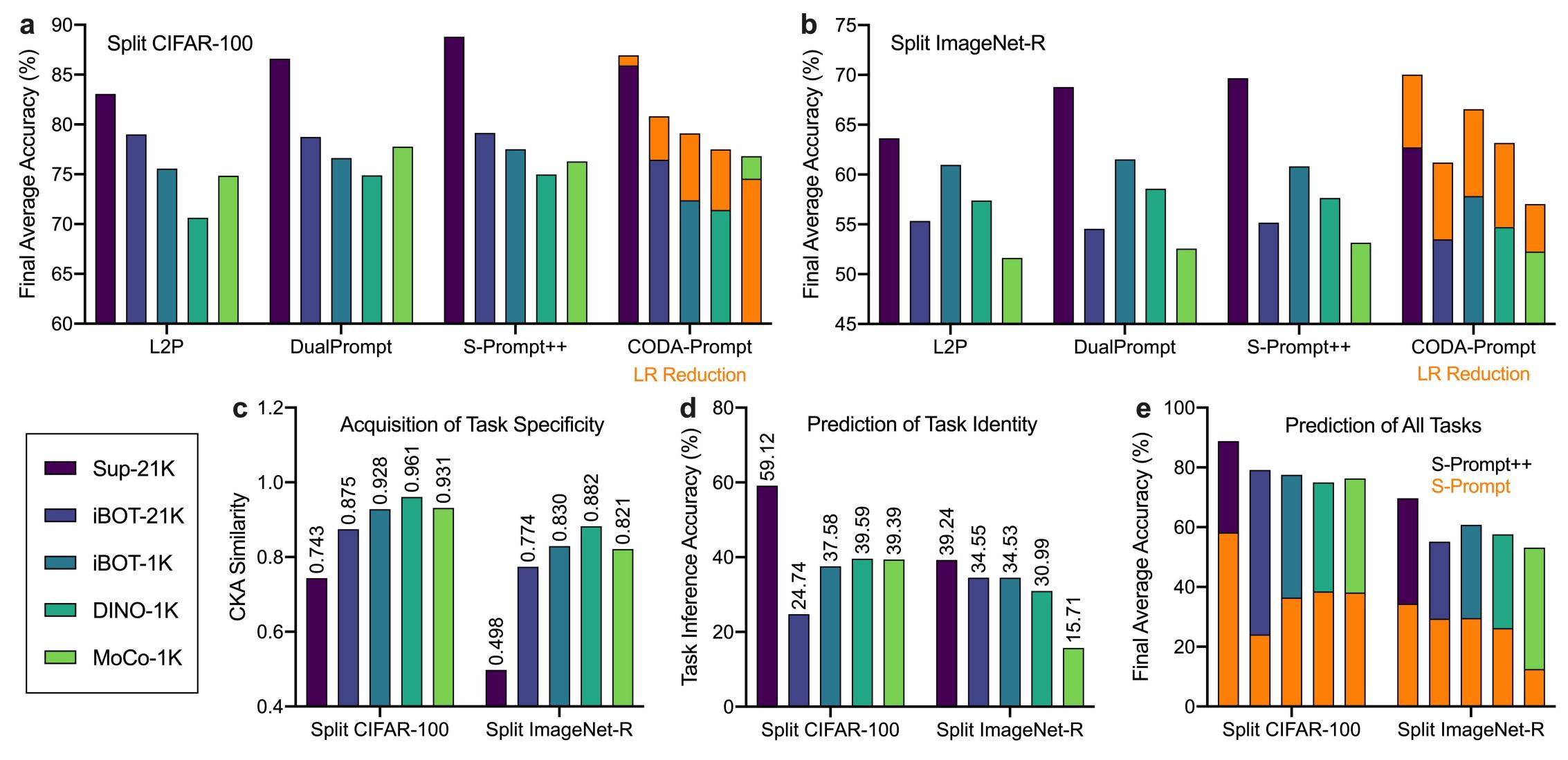

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, Jun Zhu **Tsinghua University**


NeurIPS 2023, Spotlight

Continual Learning & the Impact of Pre-training


Ramasesh et al., ICLR 2022

Zhang et al., ICCV 2023



State-of-the-Art Prompt-Based Approaches

Construction and Inference of Appropriate Prompts for Each Training / Testing Data.

Exposed Sub-optimality under Self-supervised Pre-training

$$P(\boldsymbol{x} \in \mathcal{X}_{\overline{i},\overline{j}} | \mathcal{D}, \theta) \longrightarrow \max[$$

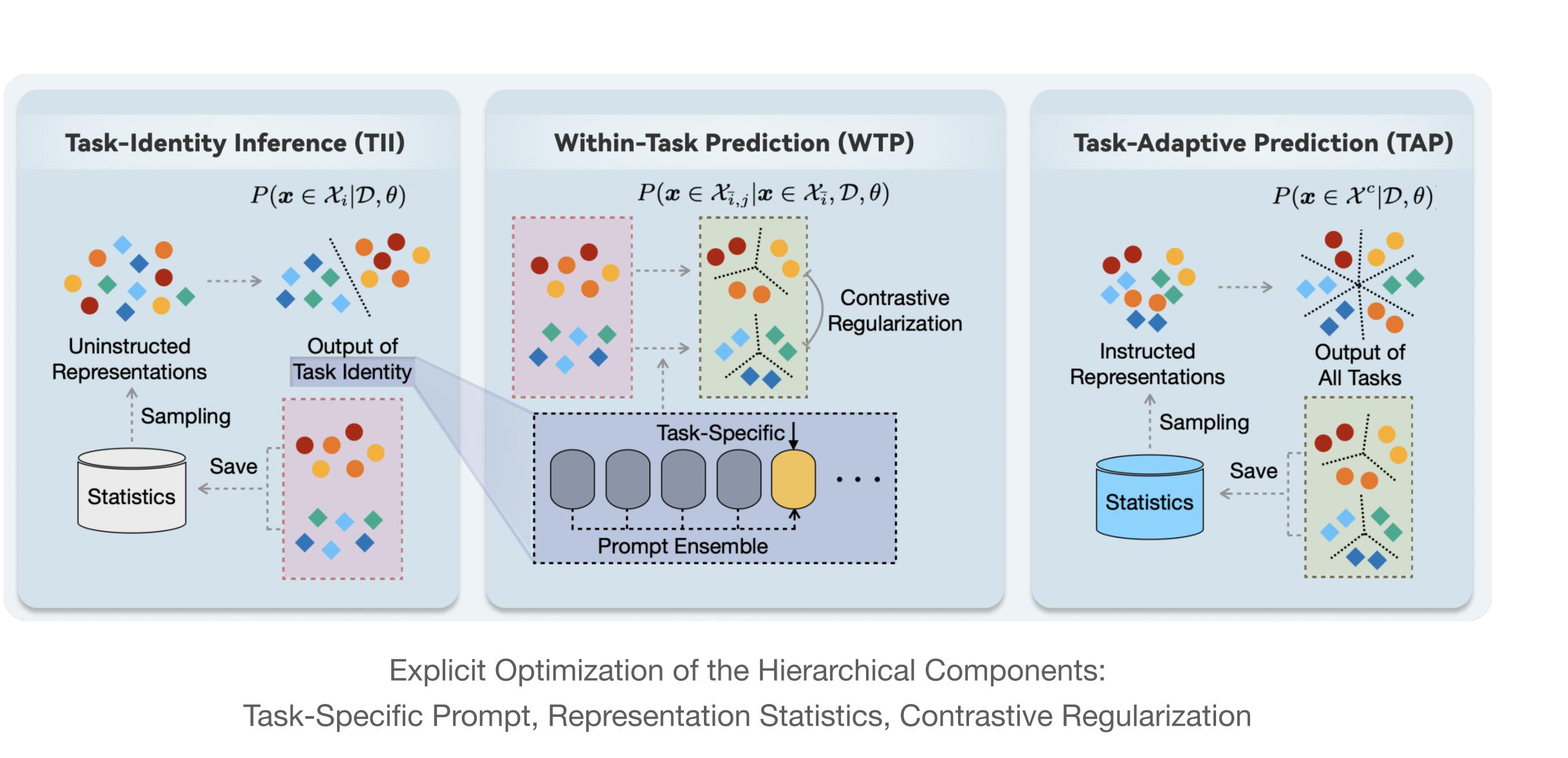
Within-Task Prediction (WTP) Task-Identity Inference (TII) Task-Adaptive Prediction (TAP)

Sufficient Conditions

Theorem 1 For continual learning with pre-training, if $\mathbb{E}_{x}[H_{WTP}(x)] \leq \delta$, $\mathbb{E}_{x}[H_{TII}(x)] \leq \epsilon$, and $\mathbb{E}_{\boldsymbol{x}}[H_{\text{TAP}}(\boldsymbol{x})] \leq \eta$, we have the loss error $\mathcal{L} \in [0, \max\{\delta + \epsilon, \eta\}]$, regardless whether WTP, TII and TAP are trained together or separately.

Necessary

Hierarchical Decomposition of Continual Learning Objective


 $[P(\boldsymbol{x} \in \mathcal{X}_{\overline{i},\overline{j}} | \mathcal{D}, \theta), P(\boldsymbol{x} \in \mathcal{X}^{y} | \mathcal{D}, \theta)]$

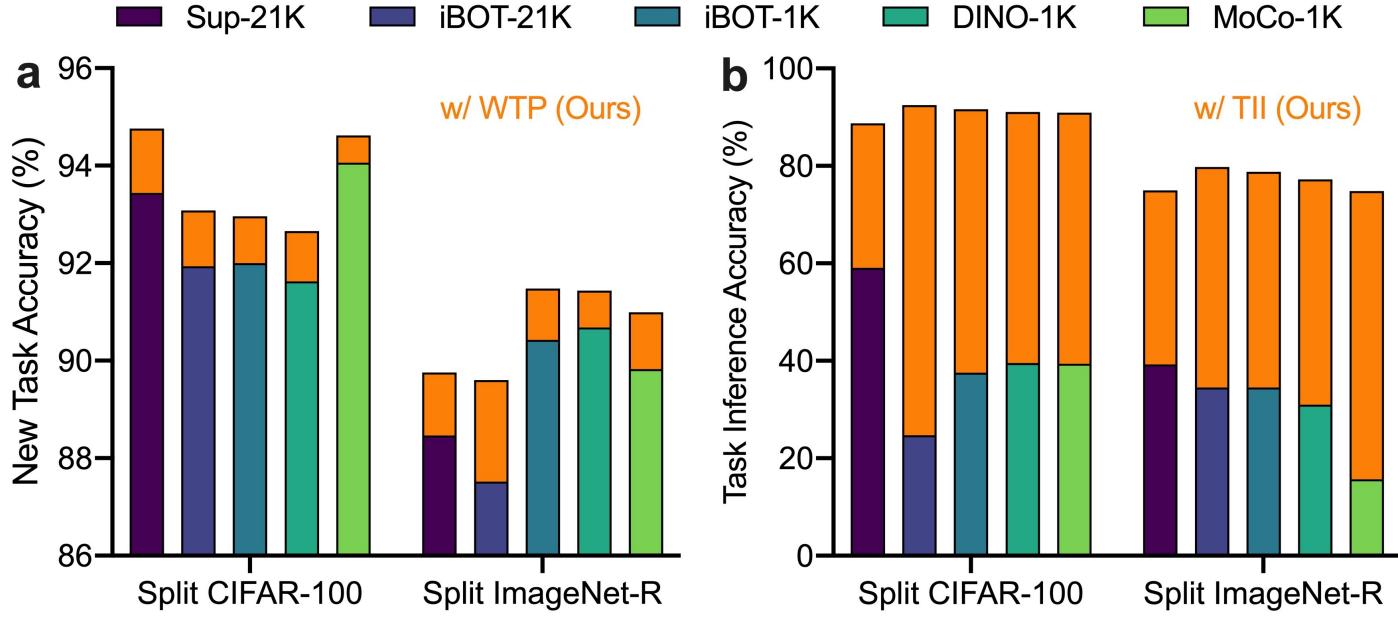
 $H_{\mathrm{WTP}}(\boldsymbol{x}) = \mathcal{H}(\boldsymbol{1}_{\bar{i}}, \{P(\boldsymbol{x} \in \mathcal{X}_{\bar{i},j} | \boldsymbol{x} \in \mathcal{X}_{\bar{i}}, \mathcal{D}, \theta)\}_{j}),$ $H_{\text{TII}}(\boldsymbol{x}) = \mathcal{H}(\mathbf{1}_{\overline{i}}, \{P(\boldsymbol{x} \in \mathcal{X}_i | \mathcal{D}, \theta)\}_i),$ Applicable to TIL / DIL / CIL $H_{\mathrm{TAP}}(\boldsymbol{x}) = \mathcal{H}(\boldsymbol{1}_{\bar{c}}, \{P(\boldsymbol{x} \in \mathcal{X}^{c} | \mathcal{D}, \theta)\}_{c}),$

Theorem 2 For continual learning with pre-training, if the loss error $\mathcal{L} \leq \xi$, then there always exist Conditions (1) a WTP, s.t. $H_{WTP} \leq \xi$; (2) a TII, s.t. $H_{TII} \leq \xi$; and (3) a TAP, s.t. $H_{TAP} \leq \xi$.

Hierarchical Decomposition (HiDe-)Prompt

Performance of Downstream Continual Learning

	DTM Mathad		Split CIFAR-100			Split ImageNet-R			_
PII	PTM	Method	FAA (†)	CAA (†)	$FFM(\downarrow)$	FAA (†)	CAA (†)	FFM (↓)	
Self-supervised Pre-training	Sup-21K	L2P [41]	83.06 ± 0.17	88.25 ± 0.01	6.58 ± 0.40	63.65 ± 0.12	67.25 ± 0.02	7.51 ± 0.17	_
		DualPrompt [40]	86.60 ± 0.19	90.64 ± 0.01	4.45 ± 0.16	68.79 ± 0.31	71.96 ± 0.04	4.49 ± 0.14	
		S-Prompt++ [39]	88.81 ± 0.18	92.25 ± 0.03	3.87 ± 0.05	69.68 ± 0.12	$72.50\pm\!0.04$	3.29 ± 0.05	
		CODA-Prompt [30]*	86.94 ± 0.63	91.57 ± 0.75	4.04 ± 0.18	70.03 ± 0.47	$74.26\pm\!0.24$	5.17 ± 0.22	
		HiDe-Prompt (Ours)	92.61 ±0.28	$\textbf{94.03} \pm 0.01$	3.16 ±0.10	75.06 ± 0.12	$\textbf{76.60} \pm 0.01$	$\textbf{2.17} \pm 0.19$	← + 3.80% / 5.03% FAA
	iBOT-21K	L2P [41]	79.00 ± 0.28	85.13 ± 0.05	5.55 ± 0.36	55.35 ± 0.28	58.62 ± 0.05	3.73 ± 0.53	
		DualPrompt [40]	78.76 ± 0.23	86.16 ± 0.02	9.84 ± 0.24	54.55 ± 0.53	58.69 ± 0.01	5.38 ± 0.70	
		S-Prompt++ [39]	79.14 ± 0.65	85.85 ± 0.17	9.17 ± 1.33	55.16 ± 0.83	58.48 ± 0.18	4.07 ± 0.16	
		CODA-Prompt [30]	80.83 ± 0.27	87.02 ± 0.20	7.50 ± 0.25	61.22 ± 0.35	66.76 ± 0.37	9.66 ± 0.20	
		HiDe-Prompt (Ours)	93.02 ±0.15	94.56 ± 0.05	1.33 ± 0.24	70.83 ± 0.17	73.23 ± 0.08	2.46 ± 0.21	← + 12.19% / 9.61% FAA
	iBOT-1K	L2P [41]	75.57 ± 0.41	82.69 ± 0.06	7.23 ± 0.93	60.97 ± 0.26	65.95 ± 0.02	4.07 ± 0.66	
		DualPrompt [40]	76.63 ± 0.05	85.08 ± 0.12	8.41 ± 0.40	61.51 ± 1.05	67.11 ± 0.08	$5.02\pm\!0.52$	
		S-Prompt++ [39]	77.53 ± 0.56	85.66 ± 0.16	8.07 ± 0.97	$60.82\pm\!0.68$	66.03 ± 0.91	$4.16\pm\!0.14$	
		CODA-Prompt [30]	79.11 ± 1.02	86.21 ± 0.49	7.69 ± 1.57	66.56 ± 0.68	$73.14\pm\!0.57$	7.22 ± 0.38	
		HiDe-Prompt (Ours)	93.48 ±0.11	95.02 ±0.01	1.00 ±0.24	71.33 ±0.21	73.62 ±0.13	2.79 ±0.26	← + 14.37% / 4.77% FAA
	DINO-1K	L2P [41]	70.65 ± 0.57	$79.02\pm\!0.01$	9.46 ± 1.68	57.40 ± 0.23	62.56 ± 0.20	3.58 ± 0.28	
		DualPrompt [40]	74.90 ± 0.21	83.98 ±0.16	$10.26\pm\!\!0.62$	58.57 ± 0.45	64.89 ± 0.15	5.80 ± 0.21	
		S-Prompt++ [39]	74.97 ± 0.46	83.82 ± 0.39	7.78 ± 0.66	57.64 ± 0.16	63.79 ± 0.05	5.08 ± 0.31	
		CODA-Prompt [30]	77.50 ± 0.64	84.81 ± 0.30	8.10 ± 0.01	63.15 ± 0.39	69.73 ± 0.25	6.86 ± 0.11	
		HiDe-Prompt (Ours)	92.51 ±0.11	94.25 ± 0.01	0.99 ±0.21	68.11 ±0.18	71.70 ±0.01	3.11 ±0.17	← + 15.01% / 4.96% FAA
	MoCo-1K	L2P [41]	74.85 ± 0.28	83.14 ± 0.03	6.51 ± 0.95	51.64 ± 0.19	58.87 ± 0.24	$\textbf{2.37} \pm 0.59$	
		DualPrompt [40]	77.77 ± 0.68	85.31 ± 0.07	6.61 ± 1.08	52.57 ± 0.82	60.65 ± 0.16	2.73 ± 0.49	
		S-Prompt++ [39]	76.30 ± 0.54	83.88 ±0.12	14.67 ± 0.64	53.15 ± 1.10	60.03 ± 0.95	4.11 ± 1.84	
		CODA-Prompt [30]	76.83 ± 0.34	84.97 ± 0.23	12.60 ± 0.02	55.75 ± 0.26	65.49 ± 0.36	10.46 ± 0.04	
		HiDe-Prompt (Ours)	91.57 ±0.20	93.70 ±0.01	1.19 ±0.18	63.77 ±0.49	68.26 ±0.01	3.57 ± 0.96	← + 13.80% / 8.02% FAA


Performance of Downstream Continual Learning

Baseline	Split CIFAR-100					Split ImageNet-R					
Dasenne	Sup-21K	iBOT-21K	iBOT-1K	DINO-1K	MoCo-1K	Sup-21K	iBOT-21K	iBOT-1K	DINO-1K	MoCo-1K	
Naive Architecture	85.11	73.05	72.20	73.74	75.67	60.22	48.00	53.68	54.33	48.77	
WTP	87.86	78.86	75.93	75.15	77.15	71.57	55.16	60.86	57.61	53.21	
WTP+TII	88.05	80.77	78.90	76.27	77.78	73.76	55.19	61.22	58.41	53.08	
WTP+TAP	89.85	84.23	86.04	84.76	85.17	72.57	60.01	67.13	64.26	58.36	
WTP+TII+TAP	92.50	90.21	90.52	88.93	89.28	74.89	70.44	70.66	66.78	63.59	
WTP+TII+TAP w/ CR	92.61	93.02	93.48	92.51	91.57	75.06	70.83	71.33	68.11	63.77	

Ablation Study:

All components are effective.

Detailed Analysis: WTP and TII are improved.

Discussion and Conclusion

- realistic self-supervised pre-training.
- training into three hierarchical components.
- achieves outstanding performance.
- techniques (Adapter, LoRA, FiLM...)
- 5. activation of memory and non-memory cells.

1. Sub-optimality of current prompt-based approaches is exposed under the more

2. Our theoretical analysis decomposes the objective of continual learning with pre-

3. We propose HiDe-Prompt to optimize the hierarchical components explicitly, which

4. The proposed framework can be generalized to other parameter-efficient fine-tuning

The proposed framework is potentially related to biological learning in selective

Thank You!

Code: <u>https://github.com/thu-ml/HiDe-Prompt</u> Paper Link: <u>https://arxiv.org/abs/2310.07234</u>