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Non-Smooth Weakly Convex Constrained Optimization

Problem formulation:

f ∗ ≡ min
x

f (x) s.t. g(x) ≤ 0 (P)

Assumption 1

f and g are real-valued and M-Lipschitz continuous (but not necessarily
smooth).

f and g are ρ-weakly convex (i.e., f (x) + ρ
2∥x∥

2 and g(x) + ρ
2∥x∥

2 are
convex).

f := inf f (x) > −∞.
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Near ϵ-Stationarity

Following the literature on weakly convex optimization (Davis and Drusvyatskiy,
2019, Davis and Grimmer, 2019, Ma et al., 2020, Jia and Grimmer, 2022)
consider the following near ϵ-stationarity.

Definition

x is an ϵ-stationary point if there exist λ ≥ 0, ζf ∈ ∂f (x) and ζg ∈ ∂g(x) s.t.∥∥ζf + λζg

∥∥ ≤ ϵ, |λg(x)| ≤ ϵ2, g(x) ≤ ϵ2, λ ≥ 0.

Definition

x is a nearly ϵ-stationary point if there exists x̂ s.t. x̂ is an ϵ-stationary point
and ∥x̂− x∥ ≤ ϵ.
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Existing Techniques

Solving (P) means to find a nearly ϵ-stationary point of (P).

Existing double-loop methods (Ma et al., 2020, Boob et al., 2023, Jia and
Grimmer, 2022) find a nearly ϵ-stationary point of (P) with oracle complexity
O(1/ϵ4) under different CQs.

The oracle complexity is the total number of times for which the algorithm
queries the subgradient or function value of f or g .
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Main contribution

Study the classical switching subgradient (SSG) method (Polyak, 1967)
and show that,

as a single-loop first-order algorithm, SSG can also find a nearly ϵ-stationary
point of (P) with oracle complexity O(1/ϵ4).

Invent a switching step-zize rule to accompany the switching subgradient.
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Switching Subgradient Method

Algorithm 1: Switching Subgradient (SSG) method

1 Input: x(0), T , step-sizes ηt > 0 and tolerances ϵt ≥ 0.
2 for t = 0, 1, · · · ,T − 1 do

3 if g(x(t)) ≤ ϵt then

4 x(t+1) = x(t) − ηtζ
(t)
f for some ζ

(t)
f ∈ ∂f (x(t)) and, I = I ∪ {t}.

5 else

6 x(t+1) = x(t) − ηtζ
(t)
g for some ζ(t)

g ∈ ∂g(x(t)) and, J = J ∪ {t}.
7 end

8 end

9 Output: x(τ) where τ is sampled from I ∪ J using Prob(τ = t) = ηt
/∑

s∈I∪J ηs .
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Technical Lemmas

Assumption 2 (Uniform Slater’s condition in Ma et al. (2020))

There exist ϵ̄ > 0, θ > 0 and ρ̄ > ρ such that Slater’s condition

∃ y s.t. g(y) +
ρ̄

2
∥y − x∥2 ≤ −θ

holds for any x satisfying g(x) ≤ ϵ̄2. (This is the CQ for SSG in our results.)

Denote: g+(x) = max{g(x), 0}, L = {x | g(x) = 0}, S = {x | g(x) ≤ 0}.

Lemma

1. Subgradient of g is bounded away from zero on L:

min
ζg∈∂g(x)

∥ζg∥ ≥ ν :=
√

2θ(ρ̂− ρ), ∀ x ∈ L for some ρ̂ ∈ (ρ, ρ̄].

2. Local error bound holds:

(ν/2) · dist(x,S) ≤ g+(x) if dist(x,S) ≤ ν/ρ.
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Oracle Complexity

When g(x(t)) > ϵt , SSG is essentially solving a sharp weakly convex unconstrained
problem

S = argmin
x

g+(x),

and thus Davis et al. (2018) suggests applying the Polyak’s step-size in this case for the
Q-linear convegence on dist(x(t),S).

Theorem 1

Suppose ρ̂ ∈ (ρ, ρ̄] and ϵ ≤ ϵ̄. Let x(0) ∈ S, ϵt = ν
4
min

{
ϵ2/M, ν/(4ρ)

}
and

ηt =

{
ν

4M2 min
{
ϵ2/M, ν/(4ρ)

}
if g(x(t)) ≤ ϵt

g(x(t))/∥ζ(t)
g ∥2 if g(x(t)) > ϵt .

Then g(x(t)) ≤ ϵ2, ∀t ≥ 0, and SSG finds a nearly ϵ-stationary point of (P) if

T ≥
8M2

(
f (x(0))− f + 3M2/(2ρ̂)

)
ρ̂(1 + 2M/ν)νϵ2 min {ϵ2/M, ν/(4ρ)} = O(1/ϵ4).

The choice of step-sizes {ηt}t≥0 in Theorem 1 shows the switching step-zize rule.
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