

Boosting Adversarial Transferability by Achieving Flat Local Maxima

Zhijin Ge^{1*}, Hongying Liu^{2*}, Xiaosen Wang^{3*}, Fanhua Shang^{4†}, Yuanyuan Liu^{1†}

¹School of Artificial Intelligence, Xidian University
 ²The Medical College, Tianjin University
 ³Huawei Singular Security Lab
 ⁴College of Intelligence and Computing, Tianjin University

zhijinge@stu.xidian.edu.cn, hyliu2009@tju.edu.cn xiaosen@hust.edu.cn, fhshang@tju.edu.cn, yyliu@xidian.edu.cn

Motivation

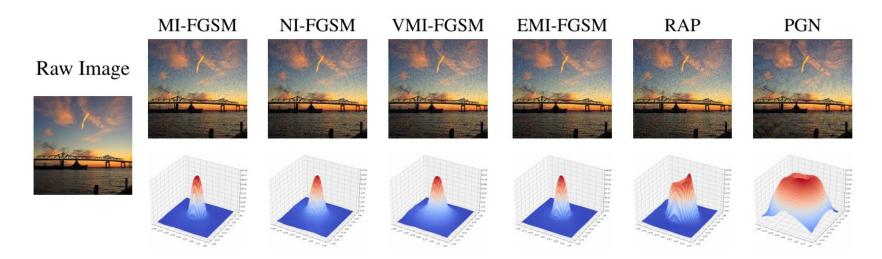


Figure 1: Adversarial examples generated by different methods are located in different regions on the surface of the loss function.

Motivation: Inspired by the observation that flat local minima are correlated with good generalization in deep learning, we are motivated to explore whether flat local optima can improve adversarial transferability.

Contributions

- To the best of our knowledge, it is the first work that empirically validates that adversarial examples located in flat regions have good transferability.
- We propose a novel attack called Penalizing Gradient Norm (PGN), which can effectively generate adversarial examples at flat local regions with better transferability.
- Empirical evaluations show that PGN can significantly improve the attack transferability on both normally trained models and adversarially trained models, which can also be seamlessly combined with various previous attack methods for higher transferability.

Method

NEURAL INFORMATION PROCESSING SYSTEMS

Assumption: Adversarial examples at flat local region w.r.t. the loss function tend to have better transferability.

• Optimization problem:

$$\max_{x^{adv}\in\mathcal{B}_\epsilon(x)}igg[J(x^{adv},y; heta)-\lambda\cdot \max_{x'\in\mathcal{B}_\zeta(x^{adv})}\|
abla_{x'}J(x',y; heta)\|_2igg].$$

However, it is impractical to calculate the maximum gradient. Hence, we approximately optimize above Equation by randomly sampling an example at each iteration respectively.

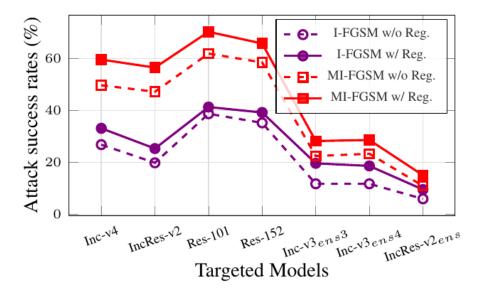


Figure 2: The average attack success rates (%) of I-FGSM and MI-FGSM w/wo the gradient regularization on seven black-box models. The adversarial examples are generated on Inc-v3.

Method

NEURAL INFORMATION PROCESSING SYSTEMS

• Approximate solution:

$$\max_{x^{adv}\in\mathcal{B}_\epsilon(x)}\mathcal{L}(x^{adv},y; heta)pprox J(x',y; heta)-\lambda\cdot\|
abla_{x'}J(x',y; heta)\|_2, \hspace{1em} ext{s.t.}\hspace{1em}x'\in\mathcal{B}_\zeta(x^{adv}).$$

$$abla_{x^{adv}}\mathcal{L}(x^{adv},y; heta)pprox
abla_{x'}J(x',y; heta)-\lambda\cdot
abla_{x'}^2J(x',y; heta)\cdot rac{
abla_{x'}J(x',y; heta)}{\|
abla_{x'}J(x',y; heta)\|_2}.$$

• Finite Difference Method:

$$abla_x^2 J(x,y; heta) \cdot v pprox rac{
abla_x J(x+lpha \cdot v,y; heta) -
abla_x J(x,y; heta)}{lpha}, v = -rac{
abla_x J(x,y; heta)}{\|
abla_x J(x,y; heta)\|_2}.$$

$$\begin{aligned} \nabla_{x^{adv}} \mathcal{L}(x^{adv}, y; \theta) &\approx \nabla_{x'} J(x', y; \theta) - \lambda \cdot \nabla_{x'}^2 J(x', y; \theta) \cdot \frac{\nabla_{x'} J(x', y; \theta)}{\|\nabla_{x'} J(x', y; \theta)\|_2} \\ &\approx \nabla_{x'} J(x', y; \theta) + \lambda \cdot \frac{\nabla_{x'} J(x' + \alpha \cdot v, y; \theta) - \nabla_{x'} J(x', y; \theta)}{\alpha} \\ &= (1 - \frac{\lambda}{\alpha}) \cdot \nabla_{x'} J(x', y; \theta) + \frac{\lambda}{\alpha} \cdot \nabla_{x'} J(x' + \alpha \cdot v, y; \theta). \end{aligned}$$

Method

NEURAL INFORMATION PROCESSING SYSTEMS

• Gradient update:

$$abla_{x_t^{adv}}\mathcal{L}(x_t^{adv},y; heta)pprox (1-\delta)\cdot
abla_{x_t'}J(x_t',y; heta)+\delta\cdot
abla_{x_t'}J(x_t'+lpha\cdot v,y; heta), \quad \delta=rac{\lambda}{lpha}.$$

Generate adversarial examples:

This approach introduces variance due to the random sampling process. To address this issue, we randomly sample multiple examples and average the gradients of these examples to obtain a more stable gradient.

$$egin{aligned} ar{g} &= rac{1}{N} \cdot \sum_{i=0}^N ig[(1-\delta) \cdot
abla_{x_t'} J(x_t',y; heta) + \delta \cdot
abla_{x_t'} J(x_t'+lpha \cdot v,y; heta) ig], \ g_{t+1} &= \mu \cdot g_t + rac{ar{g}}{\|ar{g}\|_1}, \quad g_0 = 0. \ x_{t+1}^{adv} &= \Pi_{\mathcal{B}_{\epsilon}(x)} ig[x_t^{adv} + lpha \cdot ext{sign}(g_{t+1}) ig], \quad x_0^{adv} = x. \end{aligned}$$

Algorithm 1 Penalizing Gradient Norm (PGN) attack method

Input: A clean image x with ground-truth label y, and the loss function J with parameters θ . **Parameters**: The magnitude of perturbation ϵ ; the maximum number of iterations, T; the decay factor μ ; the balanced coefficient δ ; the upper bound (i.e., ζ) of random sampling in ζ -ball; the number of randomly sampled examples, N.

1: $g_0 = 0$, $x_0^{adv} = x$, $\alpha = \epsilon/T$; 2: for $t = 0, 1, \dots, T - 1$ do Set $\bar{q} = 0$: 3: for $i = 0, 1, \dots, N - 1$ do 4: Randomly sample an example $x' \in \mathcal{B}_{\zeta}(x_t^{adv})$; Calculate the gradient at the sample $x', g' = \nabla_{x'}J(x', y; \theta)$; 5: 6: Compute the predicted point by $x^* = x' - \alpha \cdot \frac{g'}{\|g'\|_1}$; 7: Calculate the gradient of the predicted point, $g^* = \nabla_{x^*} J(x^*, y; \theta)$; Accumulate the updated gradient by $\bar{g} = \bar{g} + \frac{1}{N} \cdot [(1 - \delta) \cdot g' + \delta \cdot g^*]$; 8: 9: end for 10: 11: $g_{t+1} = \mu \cdot g_t + \frac{g}{\|\bar{g}\|_1};$ Update x_{t+1}^{adv} via $x_{t+1}^{adv} = \prod_{\mathcal{B}_{\epsilon}(x)} \left[x_t^{adv} + \alpha \cdot \operatorname{sign}(g_{t+1}) \right];$ 12: 13: end for 14: return $x^{adv} = x_T^{adv}$. **Output**: An adversarial example x^{adv} .

NEURAL INFORMATION PROCESSING SYSTEMS

Table 1: The untargeted attack success rates (%) of various gradient-based attacks in the single model setting. Here * indicates the white-box model.

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v 3_{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
Inc-v3	MI	100.0±0.0*	51.0 ± 0.47	$45.8 {\pm} 0.60$	49.0 ± 0.24	22.6 ± 0.52	22.0 ± 0.35	10.9 ± 0.24
	NI	100.0±0.0*	$61.4 {\pm} 0.42$	$59.6 {\pm} 0.54$	$57.2 {\pm} 0.18$	$22.5 {\pm} 0.37$	$22.7 {\pm} 0.35$	11.5 ± 0.26
	VMI	100.0±0.0*	$74.8 {\pm} 0.58$	$69.9 {\pm} 0.92$	$65.5 {\pm} 0.67$	$41.6{\pm}0.54$	$41.6{\pm}0.54$	25.0 ± 0.34
	EMI	100.0±0.0*	$80.7 {\pm} 0.58$	77.1 ± 0.37	$72.4 {\pm} 0.83$	$33.0 {\pm} 0.61$	$31.9{\pm}0.49$	$17.0 {\pm} 0.48$
	RAP	99.9±0.10*	$84.5 {\pm} 0.69$	$79.3 {\pm} 0.47$	$76.5 {\pm} 0.65$	$56.9 {\pm} 0.84$	$51.3 {\pm} 0.62$	$31.9 {\pm} 0.35$
	PGN	100.0±0.0*	90.6±0.67	89.5±0.75	$81.2{\pm}0.68$	$64.6{\pm}0.75$	$65.6{\pm}0.94$	45.3±0.77
Inc-v4	MI	57.2±0.36	100.0±0.0*	46.1 ± 0.14	51.5 ± 0.33	19.1±0.46	18.4 ± 0.23	10.2 ± 0.36
	NI	62.8 ± 0.43	$100.0{\pm}0.0{*}$	52.7 ± 0.34	56.7 ± 0.19	19.2 ± 0.25	$18.3 {\pm} 0.37$	11.7 ± 0.29
	VMI	77.6 ± 0.65	$99.8 {\pm} 0.10 {*}$	$69.8 {\pm} 0.41$	$66.7 {\pm} 0.33$	$41.1 {\pm} 0.87$	$41.2{\pm}0.54$	27.0 ± 0.24
	EMI	84.2 ± 0.62	99.7±0.10*	$75.0 {\pm} 0.70$	$74.4 {\pm} 0.64$	$31.5 {\pm} 0.44$	$28.0{\pm}0.65$	16.2 ± 0.36
	RAP	85.3±0.74	99.5±0.21*	$79.5 {\pm} 0.62$	77.2 ± 0.42	$45.2 {\pm} 0.69$	$46.8 {\pm} 0.48$	29.3 ± 0.51
	PGN	91.2±0.58	$99.6 {\pm} 0.15 {*}$	87.6±0.74	83.5±0.53	$67.0{\pm}0.68$	$64.2{\pm}0.63$	49.1±0.82
	MI	58.2±0.21	52.4 ± 0.41	99.3±0.21*	50.7 ± 0.26	22.0±0.37	22.0±0.31	13.8±0.43
	NI	60.3 ± 0.35	$57.1 {\pm} 0.17$	$99.5 {\pm} 0.17 {*}$	$55.3 {\pm} 0.35$	$18.3 {\pm} 0.18$	$19.3 {\pm} 0.29$	12.1 ± 0.16
IncRes-v2	VMI	78.2 ± 0.64	$77.0 {\pm} 0.57$	$99.1 {\pm} 0.36 {*}$	$66.0 {\pm} 0.48$	$47.6{\pm}0.69$	$43.3{\pm}0.36$	37.7 ± 0.37
	EMI	$85.2 {\pm} 0.78$	$83.3 {\pm} 0.29$	99.7±0.18*	$74.0 {\pm} 0.56$	$38.4 {\pm} 0.48$	$33.8 {\pm} 0.53$	24.1 ± 0.48
	RAP	87.1±0.75	$84.2 {\pm} 0.45$	$99.4 {\pm} 0.28 {*}$	$79.4 {\pm} 0.64$	$50.3 {\pm} 0.47$	$49.8{\pm}0.89$	40.2 ± 0.54
	PGN	92.0±0.69	92.3±0.63	$99.8{\pm}0.10{*}$	83.5±0.41	$74.6{\pm}0.75$	$71.5{\pm}0.64$	$66.62{\pm}0.58$
Res-101	MI	51.5±0.26	42.2 ± 0.35	36.3±0.24	100.0±0.0*	18.7 ± 0.32	16.6 ± 0.14	9.0±0.22
	NI	55.6±0.35	$46.9 {\pm} 0.41$	$40.8 {\pm} 0.28$	$100.0 {\pm} 0.0{*}$	17.5 ± 0.57	17.6 ± 0.42	$9.2{\pm}0.24$
	VMI	75.0±0.40	$69.2 {\pm} 0.59$	$63.0 {\pm} 0.84$	$100.0{\pm}0.0{*}$	$35.9 {\pm} 0.41$	$35.7{\pm}0.87$	24.1 ± 0.57
	EMI	74.3 ± 0.65	$71.7 {\pm} 0.47$	$62.6 {\pm} 0.29$	$100.0 {\pm} 0.0{*}$	$25.7 {\pm} 0.74$	$24.6{\pm}0.98$	$13.3 {\pm} 0.68$
	RAP	80.4±0.75	$75.5 {\pm} 0.56$	$68.0 {\pm} 0.84$	$99.9 {\pm} 0.10 {*}$	$40.3{\pm}0.47$	$39.9{\pm}0.73$	$30.4{\pm}1.03$
	PGN	86.2±0.84	83.3±0.66	77.8±0.69	$100.0{\pm}0.0{*}$	63.1±1.32	$62.9{\pm}0.74$	$50.8{\pm}0.88$

NEURAL INFORMATION PROCESSING SYSTEMS

Table 4: Comparison of the approximation effect between directly optimizing the second-order Hessian matrix and using the Finite Difference Method (FDM) to approximate. "Time" represents the total running time on 1,000 images, and "Memory" represents the computing memory size.

Attack	H_m	FDM	Inc-v3	Inc-v4	IncRes-v2	Res-101	Res-152	Time (s)	Memory (MiB)
I-FGSM	X	×	100.0*	27.8	19.1	38.1	35.2	52.31	1631
	1	×	100.0*	39.2	30.2	47.0	45.5	469.54	7887
	1	1	100.0*	37.9	28.6	45.7	44.6	96.42	1631

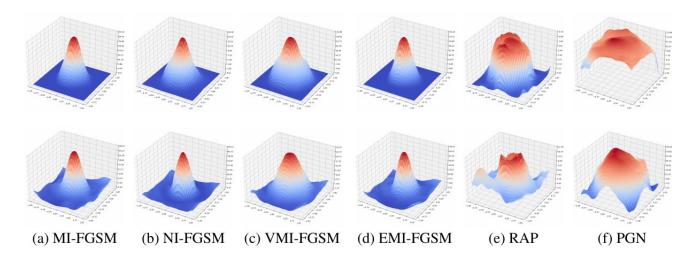


Figure 3: Visualization of loss surfaces along two random directions for two randomly sampled adversarial examples on the surrogate model (Inc-v3).

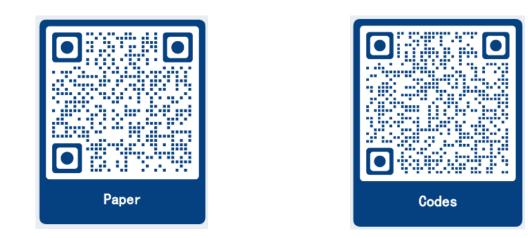
Conclusions

NEURAL INFORMATION PROCESSING SYSTEMS

- ➤ Inspired by the observation that flat local minima often result in better generalization, we assume and empirically validate that adversarial examples at a flat local region tend to have better adversarial transferability.
- We optimize the perturbation with a gradient regularize in the neighborhood of the input sample to generate an adversarial example in a flat local region. we approximates the Hessian/vector product by interpolating the first-order gradients of two samples. To better explore its neighborhood, we adopts the average gradient of several randomly sampled data points to update the adversarial perturbation.
- Our PGN can be seamlessly integrated with other gradient-based and input transformation-based attacks to further improve adversarial transferability.

Limitation: Although we have experimentally verified that flat local minima can improve the transferability of adversarial attacks, there is still a lack of theoretical analysis regarding the relationship between flatness and transferability. We hope our work sheds light on the potential of flat local maxima in generating transferable adversarial examples and provides valuable insights for further exploration in the field of adversarial attacks.

Thanks!



Codes: <u>https://github.com/Trustworthy-AI-Group/PGN</u> Paper: https://arxiv.org/abs/2306.05225