

Every Parameter Matters: Ensuring the Convergence of Federated Learning with Dynamic Heterogeneous Models Reduction

Hanhan Zhou¹, Tian Lan¹, Guru Venkataramani¹, Wenbo Ding²

¹ The George Washington University

² Tsinghua-Berkeley Shenzhen Institute

Background

• Federated Learning

• Heterogeneous Federated Learning

Main Problem

- Given a heterogeneous FL algorithm that trains a shared global model through a sequence of time-varying and client-dependent local models, what conditions can guarantee its convergence?
- How do the trained models compare to that of standard FL?

Contributions

- We establish sufficient conditions for FL algorithms with heterogeneous local models to converge to a neighborhood of a stationary point of standard FL.
- We formulate the problem to allow any model reduction strategy and identify two key factors that impact the convergence:
 - pruning-induced noise
 - minimum coverage index
- The results are numerically validated.

Convergence Analysis

• Key Notion: minimum covering index

 $\Gamma_{\min} = \min_{q,i} |\mathcal{N}_q^{(i)}|$

Since $|\mathcal{N}_q^{(i)}|$ is the number of heterogeneous local models containing the *i*th parameter, Γ_{\min} measures the minimum occurrence of the parameter in the local models in all rounds.

$$\Gamma_{min} = 4$$
_(a)

Convergence Analysis

• Key Notion: minimum covering index

 $\Gamma_{\min} = \min_{q,i} |\mathcal{N}_q^{(i)}| \qquad \begin{array}{l} \text{Since } |\mathcal{N}_q^{(i)}| \text{ is the number of heterogeneous local models containing the$ *i* $th parameter, <math>\Gamma_{\min}$ measures the minimum occurrence of the parameter in the local models in all rounds.}

Theorem 1. Under Assumptions 1-4 and for arbitrary masks satisfying $\Gamma_{\min} \ge 1$, heterogeneous FL converges to a small neighborhood of a stationary point of standard FL as follows:

$$\frac{1}{Q}\sum_{q=1}^{Q} \mathbb{E}||\nabla F(\theta_q)||^2 \leq \frac{G_0}{\sqrt{TQ}} + \frac{V_0}{Q} + \frac{I_0}{\Gamma_{\min}} \cdot \frac{\delta^2}{Q} \sum_{q=1}^{Q} \mathbb{E}||\theta_q||^2$$

where $V_0 = 3L^2 NG/\Gamma_{\min}$, $I_0 = 3L^2 N$, and $G_0 = 4\mathbb{E}[F(\theta_0)] + 6LN\sigma^2/\Gamma_{\min}^2$, are constants depending on the initial model parameters and the gradient noise.

Insights

• Every Parameter Matters

- The analysis shows that as long as each global parameter appears in at least one local model per communication round, heterogeneous federated learning can converge.
- More coverage leads to faster convergence
- Instead of pruning greedily for local heterogenous models, the minimum coverage index should also be considered

Experiments

Conclusion

- We have provided convergence guarantees for heterogeneous federated learning algorithms employing arbitrary, dynamic local models under sufficient conditions.
- The analysis identifies model reduction noise and minimum coverage index as two key factors that impact the convergence gap.
- These insights can guide the design of optimized model reduction strategies to improve convergence.
- Experiments on image classification validate the theory and show optimized strategies guided by the analysis can improve accuracy.