Phase Diagram of Early Training Dynamics in Deep Networks: Effect of the Learning Rate, Depth, and Width

Dayal Kalra and Maissam Barkeshli NeurIPS 2023

Department of Physics, University of Maryland, College Park (UMD)

Dec 12, 2023

Dayal Kalra and Maissam Barkeshli (UMD)

Premise:

- We study the early training dynamics of DNNs trained using SGD with learning rate $\eta = c/\lambda_0^H$. Here, c is a constant and λ_t^H is the top eigenvalue of the Hessian H (sharpness) at step t.
- By monitoring loss and sharpness, we study the effect of learning rate constant c, depth d, and width w on the early training dynamics

Architectures: Results validated FCNs, CNNs, and ResNets with ReLU activation and initial weight variance $\sigma_w^2 = 2/fan_{in}$.

Loss functions and datasets: MSE and cross-entropy; CIFAR-10, MNIST, and Fashion-MNIST.

The four regimes of neural network training

Figure: Training trajectories of CNNs trained on CIFAR-10 using MSE.

Typical training trajectories of deep networks show four training regimes:

- **Early time transient:** loss and sharpness may drastically change depending on the learning rate and training eventually settles down.
- Intermediate saturation: sharpness plateaus before gradually increasing. (for the analysis of the intermediate saturation regime, refer to the paper)
- **iii** Progressive sharpening: sharpness increases until it reaches $\lambda^H \approx 2/\eta$ (Jastrzebski et. al 2020)
- **Late-time dynamics (EoS):** For MSE loss, sharpness oscillates around $2/\eta$. For cross-entropy loss, sharpness decreases after reaching $2/\eta$ (Cohen et. al 2021).

Early training dynamics of wide networks

Classical intuition from convex optimization requires $\eta \lambda_0^H = c < 2$.

Figure: Early training dynamics of wide CNNs trained on CIFAR-10 using MSE.

Wide networks trained with MSE loss have three phases of early training wrt learning rate (Lewkowycz et al. 2020):

- **Lazy phase** (c < 2): Loss monotonically decreases, sharpness remains constant
- **Catapult phase** $(2 < c < c_{max})$: Loss spikes initially, training converges with an abrupt decrease in sharpness
- **Divergent phase** $(c_{max} < c)$: Training diverges

Early training dynamics of deep networks

Figure: Early training dynamics of deep CNNs trained on CIFAR-10 using MSE.

Observation: For deep networks, training loss and sharpness may catapult only near the largest trainable learning rate.

To quantify the early training dynamics, define the following critical constants:

 (c_{loss}) : Smallest learning rate constant resulting in early loss increase

- (c_{sharp}) : Smallest learning rate constant resulting in early sharpness increase
- (c_{max}) : Largest trainable learning rate constant during early training

Early training dynamics

Phase diagram of early training with width

Figure: Phase diagrams of early training of three different types of neural networks. Each data point $\langle c \rangle$ is an average over ten random initializations.

Observations:

- Critical constants $\langle c_{loss} \rangle, \langle c_{sharp} \rangle$, and $\langle c_{max} \rangle$ increase with 1/w.
- In particular, $\langle c_{loss}
 angle$ deviates from c=2 towards $\langle c_{max}
 angle$ on increasing in $^{1\!/w.}$

Early training dynamics

Phase diagram of early training with depth

Figure: Phase diagrams of early training with depth for FCNs trained on Fashion-MNIST. Each data point $\langle c \rangle$ is an average over ten random initializations.

Observation: Similar phase diagrams emerge on replacing d with 1/w.

The phase diagram of early training

Figure: Sketch of the phase diagram of early training

Effect of network output at initialization

We examine the effect of network output by setting it to zero at initialization, $f(x;\theta_0)=0$ by

- **I** centering the network $f_c(x;\theta) = f(x;\theta) f(x;\theta_0)$
- 2 setting the last layer weights to zero at initialization

Figure: Remarkably, both (1) and (2) remove the opening up of the sharpness reduction phase with 1/w and d.

Insights from a simple model

Definition

(uv model): Consider a two-layer linear network

$$f(x) = \frac{1}{\sqrt{w}} v^T u \ x, \qquad \qquad x, f \in \mathbb{R}$$

trained on a single training example (x, y) = (1, 0) using MSE loss.

Figure: (left) uv model trained on a single example (x, y) = (1, 0) exhibits a similar phase diagram. (right) training trajectories of uv model with w = 2 in a two-dimensional space defined by Tr(H) and weight correlation $\cos(u, v)$

Thank You

Thank You!

https://openreview.net/forum?id=Al9yglQGKj https://github.com/dayal-kalra/early-training

Dayal Kalra and Maissam Barkeshli (UMD)

Abrupt reduction in sharpness with learning rate

Definition

 $(\langle c_{crit} \rangle)$ Given the averaged normalized sharpness $\langle \frac{\lambda_{\tau}^{+}}{\lambda_{0}^{H}} \rangle$ estimated using sharpness measured at τ , we define c_{crit} as

$$\langle c_{crit}
angle = rgmin_c rac{\partial^2}{\partial c^2} \left\langle rac{\lambda_{\tau}^H}{\lambda_0^H}
ight
angle$$
 (1)

Observation: $\langle c_{crit} \rangle \approx 2$, irrespective of depth and width.

Dayal Kalra and Maissam Barkeshli (UMD)

Insights from the training trajectories

Figure: uv model with small width (w = 2).

Dayal Kalra and Maissam Barkeshli (UMD)

Key References I