Neural Lyapunov Control for Discrete-Time Systems

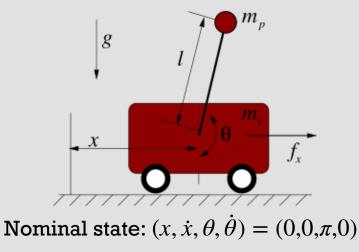
Junlin Wu, Andrew Clark, Yiannis Kantaros and Yevgeniy Vorobeychik



Washington University in St. Louis

Learning Stable Policies

- Discrete-time <u>nonlinear dynamics</u>: $x_{t+1} = f(x_t, u_t)$, where x_t, u_t are state and control at time *t*.
- Our Goal: learn a provably stable policy $u_t = \pi(x_t)$.
- **Stability:** a dynamical system converges to a nominal state whenever the starting state is in a "region of attraction (RoA)".



Lyapunov Stability (Conventional)

• Lyapunov Stability (discrete-time controlled dynamical systems): If policy $u_t = \pi(x_t)$ and Lyapunov function V(x) satisfy the below conditions, then x = 0 is stable.

Lyapunov conditions

1)
$$V(0) = 0, V(x) > 0 \ \forall x \neq 0$$

2) $V(f(x_t, u_t)) < V(x_t) \ \forall x, u_t = \pi(x_t)$

- **Goal:** synthesize a Lyapunov function V(x) and policy (controller) $u = \pi(x)$ over a region *R* such that conditions 1) and 2) hold on *R*.
- Sub-level set $D = \{x \in R \mid V(x) \le \beta\}$ is RoA.

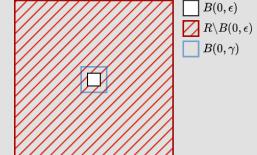
Approximately Lyapunov Stability

- Key Challenge: verification does not work near the origin (numerical instability, precision limits, etc).

 ϵ -Lyapunov conditions over R

1) V(0) = 0, $V(x) > 0 \quad \forall x \in R \setminus B(0,\epsilon)$

2) $\exists \eta > 0 : V(f(x, \pi(x))) \le V(x) - \eta \ \forall x \in R \setminus B(0, \epsilon), u = \pi(x)$

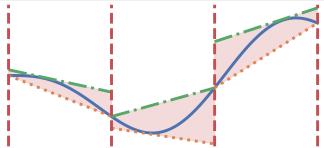


- Theorem [informal]: Under these conditions, if we start in $\operatorname{RoA} D$:
 - a) we will reach $B(0,\epsilon)$ in finite time,
 - b) we will reach $B(0,\epsilon)$ infinitely often, and

c) for any γ , there is ϵ such that ϵ -stability implies that we converge to $B(0,\gamma)$ in finite time.

Verification Algorithm (MILP)

- We represent policies $\pi_{\beta}(x)$ and Lyapunov functions $V_{\theta}(x)$ as NNs with ReLU activation function.
- The main challenge is to verify the term $V(f(x, \pi(x))) \le V(x) \eta$ $\forall x \in R \setminus B(0, \epsilon)$, where the dynamics $f(x_t, u_t)$ is nonlinear.
- We split the region R into grid, and use linear function to upper/lower bound $f(x_t, u_t)$ within each sub-region.
 - The problem can now be written into MILP.
 - Automatically refine grid for tighter bounds.



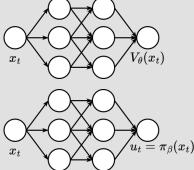
ld illustration

Learning Algorithm

• The goal now is to jointly learn $(\pi_{\beta}, V_{\theta})$ to provably satisfy the ϵ -Lyapunov stability conditions.

Lyapunov loss function

$$\min_{\theta,\beta} \sum_{S} L(x; V_{\theta}, \pi_{\beta})$$



• Counterexamples in set *S* comes from: 1) a novel MILP-based verifier (slow); 2) a novel gradient-based approach (fast).

Gradient-Based Approach (Counterexamples)

• We use *projected gradient descent* (PGD) to solve two optimization problems which enables faster counterexample generation:

$$\min_{x \in R} V_{\theta}(x)$$

$$\min_{x \in R} V_{\theta}(x) - V_{\theta}(f(x, \pi_{\beta}(x)))$$

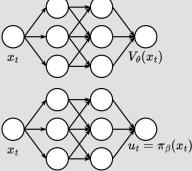
• PGD: $x_{k+1} = \Pi\{x_k - \alpha_k \operatorname{sgn}(\nabla F_{\theta}(x_k))\}$, where $F(\cdot)$ is the objective for the minimization problem.

Learning Algorithm

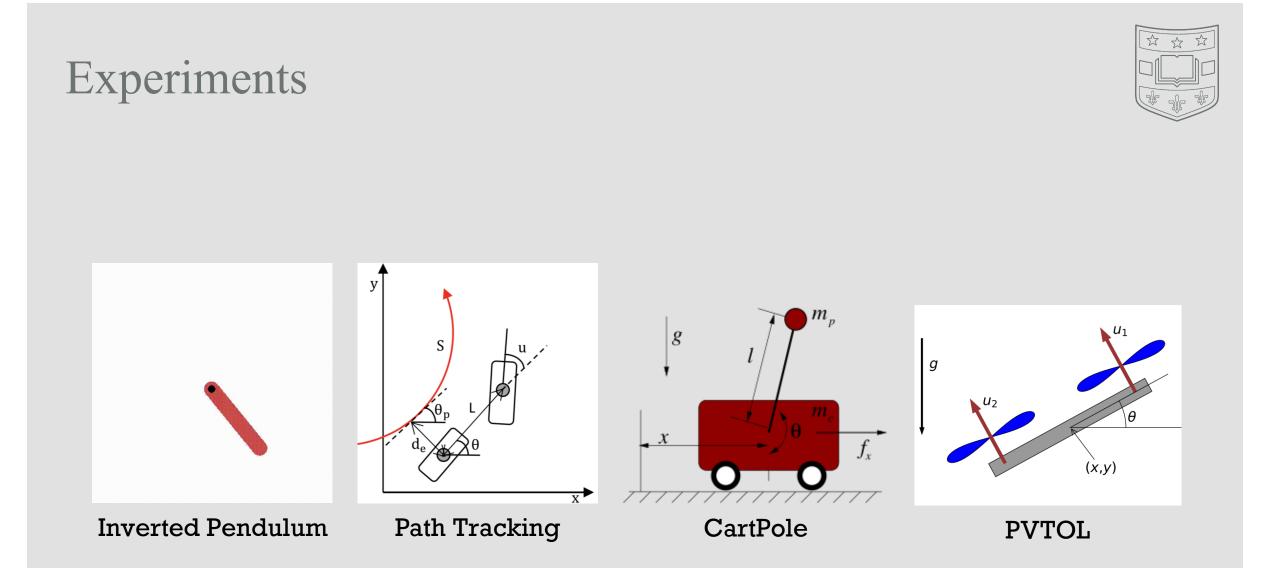
• The goal now is to jointly learn $(\pi_{\beta}, V_{\theta})$ to provably satisfy the ϵ -Lyapunov stability conditions.

Lyapunov loss function

$$\min_{\theta,\beta} \sum_{S} L(x; V_{\theta}, \pi_{\beta})$$



- Counterexamples in set *S* comes from: 1) a novel MILP-based verifier (slow); 2) a novel gradient-based approach (fast).
- Keep training until $\pi_{\beta}(x)$ and $V_{\theta}(x)$ pass verification.



Experiments

Table 1: Inverted Pendulum								
	Valid Region	Runtime (s)	ROA	Max ROA	Success Rate			
NLC (free)	$ x _{2} \le 6.0$	28 ± 29	11 ± 4.6	22	100%			
NLC (max torque 6.0)	$ x _2 \le 6.0$	519 ± 184	13 ± 27	66	20%			
UNL (max torque 6.0)	$ x _2 \le 4.0$	821 ± 227	1 ± 2	7	30%			
LQR	$ x _{\infty} \leq 5.8$	< 1	14	14	success			
SOS	$ x _{\infty} \le 1.7$	< 1	6	6	success			
DITL	$ x _{\infty} \le 12$	8.1 ± 4.7	61 ± 31	123	100%			

• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.

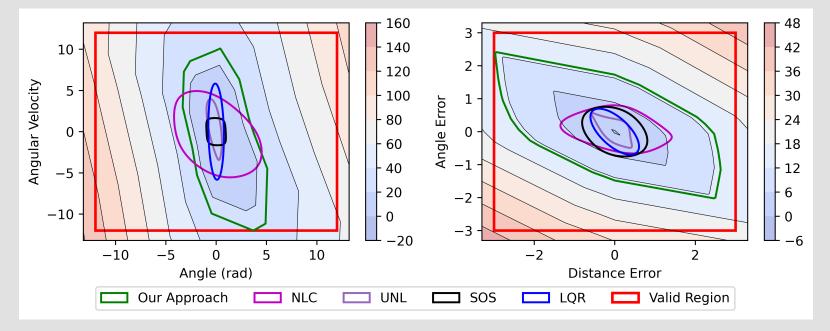
Table 2:	Path	Tracking
----------	------	----------

	Valid Region	Runtime (s)	ROA	Max ROA	Success Rate
NLC	$ x _2 \le 1.0$	109 ± 81	0.5 ± 0.2	0.76	100%
NLC	$ x _2 \le 1.5$	151 ± 238	1.4 ± 0.9	2.8	80%
UNL	$ x _2 \le 0.8$	925 ± 110	0.1 ± 0.2	0.56	10%
LQR	$ x _{\infty} \leq 0.7$	< 1	1.02	1.02	success
SOS	$ x _{\infty} \le 0.8$	< 1	1.8	1.8	success
DITL (LQR)	$ x _{\infty} \le 3.0$	9.8 ± 4	8 ± 3	12.5	100%
DITL (RL)	$ x _{\infty} \le 3.0$	14 ± 11	9 ± 3.5	16	100%

• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.

Experiments

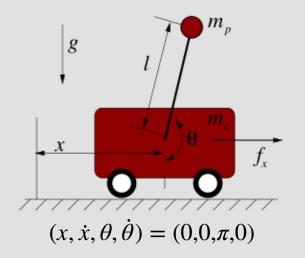
ROA plot of inverted pendulum (left) and path tracking (right)

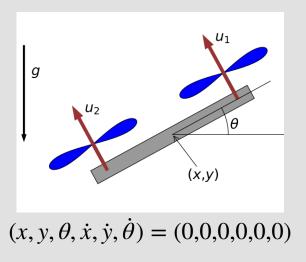


• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.

Experiments

• In two more complex domains (CartPole and PVTOL), ours is the first automated approach to achieve provable stability for actual underlying nonlinear dynamics.





Takeaways

- We utilize the structure of the Lyapunov condition in discrete-time nonlinear systems to enhance verification efficiency.
- We introduce a gradient-based algorithm for rapid counterexample generation, accelerating the model training process.
- We propose "approximately Lyapunov stability", which formalizes the impact of numerical instability issues of verifying near the origin.
- Our approach outperforms SOTA methods.

Thank you!

