# Neural Lyapunov Control for Discrete-Time Systems

Junlin Wu, Andrew Clark, Yiannis Kantaros and Yevgeniy Vorobeychik

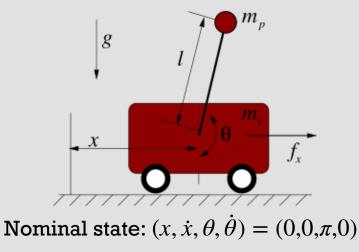


Washington University in St. Louis

### Learning Stable Policies



- Discrete-time <u>nonlinear dynamics</u>:  $x_{t+1} = f(x_t, u_t)$ , where  $x_t, u_t$ are state and control at time *t*.
- Our Goal: learn a provably stable policy  $u_t = \pi(x_t)$ .
- **Stability:** a dynamical system converges to a nominal state whenever the starting state is in a "region of attraction (RoA)".



### Lyapunov Stability (Conventional)



• Lyapunov Stability (discrete-time controlled dynamical systems): If policy  $u_t = \pi(x_t)$  and Lyapunov function V(x) satisfy the below conditions, then x = 0 is stable.

Lyapunov conditions

1) 
$$V(0) = 0, V(x) > 0 \ \forall x \neq 0$$
  
2)  $V(f(x_t, u_t)) < V(x_t) \ \forall x, u_t = \pi(x_t)$ 

- **Goal:** synthesize a Lyapunov function V(x) and policy (controller)  $u = \pi(x)$  over a region *R* such that conditions 1) and 2) hold on *R*.
- Sub-level set  $D = \{x \in R \mid V(x) \le \beta\}$  is RoA.

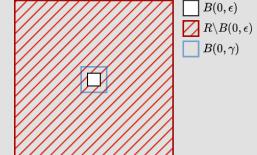
# Approximately Lyapunov Stability

- Key Challenge: verification does not work near the origin (numerical instability, precision limits, etc).

 $\epsilon$ -Lyapunov conditions over R

1) V(0) = 0,  $V(x) > 0 \quad \forall x \in R \setminus B(0,\epsilon)$ 

2)  $\exists \eta > 0 : V(f(x, \pi(x))) \le V(x) - \eta \ \forall x \in R \setminus B(0, \epsilon), u = \pi(x)$ 



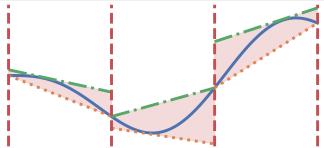
- Theorem [informal]: Under these conditions, if we start in  $\operatorname{RoA} D$ :
  - a) we will reach  $B(0,\epsilon)$  in finite time,
  - b) we will reach  $B(0,\epsilon)$  infinitely often, and

c) for any  $\gamma$ , there is  $\epsilon$  such that  $\epsilon$ -stability implies that we converge to  $B(0,\gamma)$  in finite time.

### Verification Algorithm (MILP)



- We represent policies  $\pi_{\beta}(x)$  and Lyapunov functions  $V_{\theta}(x)$  as NNs with ReLU activation function.
- The main challenge is to verify the term  $V(f(x, \pi(x))) \le V(x) \eta$  $\forall x \in R \setminus B(0, \epsilon)$ , where the dynamics  $f(x_t, u_t)$  is nonlinear.
- We split the region R into grid, and use linear function to upper/lower bound  $f(x_t, u_t)$  within each sub-region.
  - The problem can now be written into MILP.
  - Automatically refine grid for tighter bounds.



ld illustration

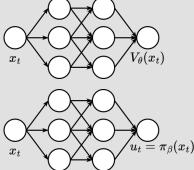
# Learning Algorithm



• The goal now is to jointly learn  $(\pi_{\beta}, V_{\theta})$  to provably satisfy the  $\epsilon$ -Lyapunov stability conditions.

Lyapunov loss function

$$\min_{\theta,\beta} \sum_{S} L(x; V_{\theta}, \pi_{\beta})$$



• Counterexamples in set *S* comes from: 1) a novel MILP-based verifier (slow); 2) a novel gradient-based approach (fast).

Gradient-Based Approach (Counterexamples)



• We use *projected gradient descent* (PGD) to solve two optimization problems which enables faster counterexample generation:

$$\min_{x \in R} V_{\theta}(x)$$
  
$$\min_{x \in R} V_{\theta}(x) - V_{\theta}(f(x, \pi_{\beta}(x)))$$

• PGD:  $x_{k+1} = \Pi\{x_k - \alpha_k \operatorname{sgn}(\nabla F_{\theta}(x_k))\}$ , where  $F(\cdot)$  is the objective for the minimization problem.

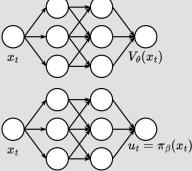
# Learning Algorithm



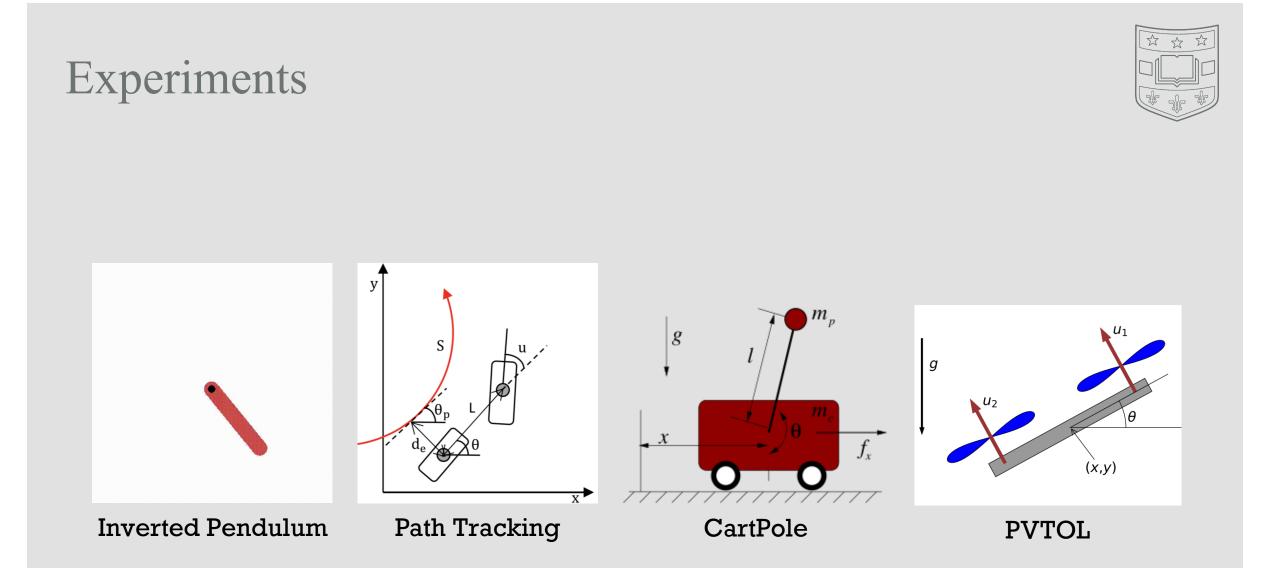
• The goal now is to jointly learn  $(\pi_{\beta}, V_{\theta})$  to provably satisfy the  $\epsilon$ -Lyapunov stability conditions.

Lyapunov loss function

$$\min_{\theta,\beta} \sum_{S} L(x; V_{\theta}, \pi_{\beta})$$



- Counterexamples in set *S* comes from: 1) a novel MILP-based verifier (slow); 2) a novel gradient-based approach (fast).
- Keep training until  $\pi_{\beta}(x)$  and  $V_{\theta}(x)$  pass verification.



#### Experiments



| Table 1: Inverted Pendulum |                           |             |             |         |              |  |  |  |
|----------------------------|---------------------------|-------------|-------------|---------|--------------|--|--|--|
|                            | Valid Region              | Runtime (s) | ROA         | Max ROA | Success Rate |  |  |  |
| NLC (free)                 | $  x  _{2} \le 6.0$       | $28\pm29$   | $11\pm4.6$  | 22      | 100%         |  |  |  |
| NLC (max torque 6.0)       | $  x  _2 \le 6.0$         | $519\pm184$ | $13\pm27$   | 66      | 20%          |  |  |  |
| UNL (max torque 6.0)       | $  x  _2 \le 4.0$         | $821\pm227$ | $1\pm 2$    | 7       | 30%          |  |  |  |
| LQR                        | $  x  _{\infty} \leq 5.8$ | < 1         | 14          | 14      | success      |  |  |  |
| SOS                        | $  x  _{\infty} \le 1.7$  | < 1         | 6           | 6       | success      |  |  |  |
| DITL                       | $  x  _{\infty} \le 12$   | $8.1\pm4.7$ | $61 \pm 31$ | 123     | 100%         |  |  |  |

• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.





| Table 2: | Path | Tracking |
|----------|------|----------|
|----------|------|----------|

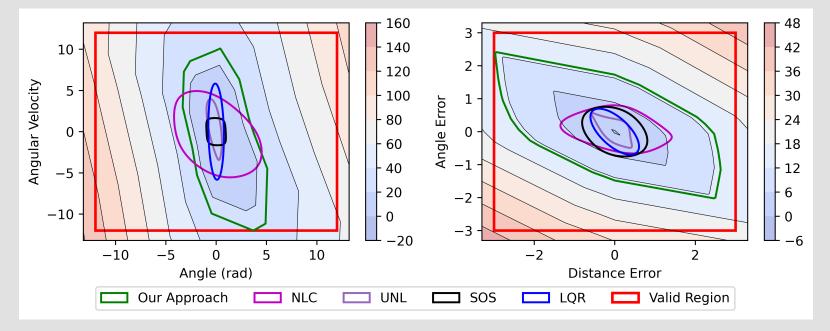
|            | Valid Region              | Runtime (s)  | ROA         | Max ROA | Success Rate |
|------------|---------------------------|--------------|-------------|---------|--------------|
| NLC        | $  x  _2 \le 1.0$         | $109 \pm 81$ | $0.5\pm0.2$ | 0.76    | 100%         |
| NLC        | $  x  _2 \le 1.5$         | $151\pm238$  | $1.4\pm0.9$ | 2.8     | 80%          |
| UNL        | $  x  _2 \le 0.8$         | $925\pm110$  | $0.1\pm0.2$ | 0.56    | 10%          |
| LQR        | $  x  _{\infty} \leq 0.7$ | < 1          | 1.02        | 1.02    | success      |
| SOS        | $  x  _{\infty} \le 0.8$  | < 1          | 1.8         | 1.8     | success      |
| DITL (LQR) | $  x  _{\infty} \le 3.0$  | $9.8\pm4$    | $8\pm3$     | 12.5    | 100%         |
| DITL (RL)  | $  x  _{\infty} \le 3.0$  | $14 \pm 11$  | $9\pm3.5$   | 16      | 100%         |

• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.

#### Experiments



#### ROA plot of inverted pendulum (left) and path tracking (right)

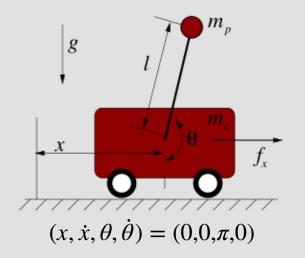


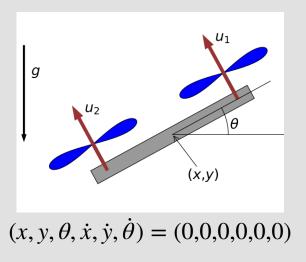
• Key observations: our approach is both much faster, and much more effective than prior art for learning provably stable policies.

#### Experiments



• In two more complex domains (CartPole and PVTOL), ours is the first automated approach to achieve provable stability for actual underlying nonlinear dynamics.





#### Takeaways



- We utilize the structure of the Lyapunov condition in discrete-time nonlinear systems to enhance verification efficiency.
- We introduce a gradient-based algorithm for rapid counterexample generation, accelerating the model training process.
- We propose "approximately Lyapunov stability", which formalizes the impact of numerical instability issues of verifying near the origin.
- Our approach outperforms SOTA methods.



# Thank you!



