

# ProteinNPT: Improving Protein Property Prediction & Design with Non-Parametric Transformers



### **Motivations**

Learning fitness landscapes is critical to many tasks in biology:

#### **Challenges & limitations of current approaches**

Mutation effects prediction Effects of genetic mutations in humans

Viral evolution Predicting which variant are likely to escape immunity

Protein engineering Designing new biomolecules with desired properties

- The protein space is massive and annotations are sparsely available
- Protein language models provide rich representation of protein sequences. Yet, the dimensionality of the embedded sequences is typically too large relative to the number of available labels
- Prior approaches have relied on limited representations (e.g., one-hot-encodings) or dimensionality reduction methods (e.g., mean-pooling across sequence length<sup>1</sup>)



# ProteinNPT: A semi-supervised conditional pseudo-generative model for protein property prediction based on a tri-axial attention mechanism sequences





#### At training time

- Batch embedding
- We embed an input batch comprised of sequences, targets & auxiliary labels
- We mask a subset of tokens and labels at random
  - Axial attention
- Row attention (horizontally) across tokens and labels
- Column attention (vertically) across labeled sequences
- 3

2

1

### **Prediction loss**

 Use last layer embeddings to predict masked tokens and targets

# ProteinNPT: A semi-supervised conditional pseudo-generative model for protein property prediction based on a tri-axial attention mechanism sequences





#### At inference

- Batch embedding
- We embed the input batch with trained embeddings
- Targets for the sequences to predict are masked but the batch also includes training sequences w/ known targets
- No sequence token is masked
  - Axial attention
- Same as during training
- 3

2

1

### Prediction

 Predict target based on last-layer target embedding

## ProteinNPT achieves SOTA performance on protein fitness prediction

#### Single property prediction

Multiple properties prediction

| Sing | le su | bstitu | ition |
|------|-------|--------|-------|
|      |       |        |       |

|                   | <b>Spearman</b> (↑) |      |       |      |  |
|-------------------|---------------------|------|-------|------|--|
| Model name        | Contig.             | Mod. | Rand. | Avg. |  |
| OHE               | 0.08                | 0.02 | 0.54  | 0.21 |  |
| OHE - Aug. (DS)   | 0.41                | 0.40 | 0.49  | 0.43 |  |
| OHE - Aug. (MSAT) | 0.41                | 0.40 | 0.50  | 0.44 |  |
| Embed Aug. (MSAT) | 0.47                | 0.49 | 0.57  | 0.51 |  |
| ProteinNPT        | 0.48                | 0.51 | 0.66  | 0.55 |  |
|                   | ,                   |      |       |      |  |
|                   | MSE $(\downarrow)$  |      |       |      |  |
| Model name        | Contig.             | Mod. | Rand. | Avg. |  |
| OHE               | 1.17                | 1.11 | 0.92  | 1.06 |  |
| OHE - Aug. (DS)   | 0.98                | 0.93 | 0.78  | 0.90 |  |
| OHE - Aug. (MSAT) | 0.97                | 0.92 | 0.77  | 0.89 |  |
| Embed Aug. (MSAT) | 0.93                | 0.85 | 0.67  | 0.82 |  |

We introduce **3 cross validation schemes** (random, modulo, contiguous) to provide stronger guarantees on ability of fitness predictors to **extrapolate across positions** 

0.93

ProteinNPT

0.83

0.53

0.77





# We implemented and tested 3 different strategies to quantify prediction uncertainty with ProteinNPT

| MC dropout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch Resampling                                                                                                                                                                                                                                                                                  | Hybrid                                                                                                                                                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Perform MC dropout to sample from model<br>parameters, keeping the same set of labeled<br>sequences across forward passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample different subset of labeled<br>sequences (with replacement) for each<br>forward pass, with no dropout applied                                                                                                                                                                              | Combine the MC dropout and batch resampling schemes                                                                                                                                                                                                                                      |  |
| 0.85<br>0.80<br>0.75<br>0.70<br>0.65<br>0.60<br>0.55<br>0.60<br>0.55<br>0.60<br>0.55<br>0.60<br>0.55<br>0.60<br>0.55<br>0.60<br>0.55<br>0.60<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75 | <ul> <li>Hybrid - Random</li> <li>Hybrid - Contiguous</li> <li>Hybrid - Modulo</li> <li>MC dropout - Random</li> <li>MC dropout - Contiguous</li> <li>MC dropout - Modulo</li> <li>Batch resampling - Random</li> <li>Batch resampling - Contiguous</li> <li>Batch resampling - Modulo</li> </ul> | <ul> <li>Uncertainty calibration curves</li> <li>MSE as a function of the # of test points excluded based on their uncertainty:         <ul> <li>Rightmost point → no point excluded</li> <li>Leftmost point → MSE on the subset of the 10% most confident points</li> </ul> </li> </ul> |  |

# In silico iterative redesign experiments demonstrate significant performance lift from ProteinNPT over prior baselines

#### **Experiment Design**

- Goal: Start from natural sequences and iteratively mutate sequences to design proteins with improved properties
- In our setting: select mutants from sequences tested in DMS assay (masking all label values)
- Pool based optimisation: select at each acquisition cycle which sequences to add to training pool from the unlabelled set
- Bayesian optimization: select points based on the Upper Confidence Bound acquisition function

## ProteinNPT outperforms baselines at recalling the sequences with high fitness



### Attention mechanisms: row-wise attention captures correlations between labels and positions; column-wise attention is critical to performance

#### **Row-wise attention**



- Row-wise attention maps recapitulate known dependencies between labels and residues -- here a substrate binding site for the DFHR protein (in red)
- It could also help uncover unknown dependencies between certain positions in sequence and the property of interest

#### **Column-wise attention**

• Training ProteinNPT with column-wise attention is critical to reaching SOTA performance

| CV scheme  | No column attention | With column attention |
|------------|---------------------|-----------------------|
| Random     | 0.669               | 0.684                 |
| Modulo     | 0.530               | 0.531                 |
| Contiguous | 0.425               | 0.501                 |
| Average    | 0.542               | 0.572                 |

- At inference, using as few as 100 labeled sequences for column-wise attention captures most of the effect
- No performance lift is observed when using more than 1k labeled sequences

| CV         | Nb. la | abelled s | equence | s sample | d at infe | erence |
|------------|--------|-----------|---------|----------|-----------|--------|
| scheme     | 0      | 100       | 200     | 500      | 1000      | 2000   |
| Random     | 0.398  | 0.677     | 0.678   | 0.679    | 0.684     | 0.685  |
| Modulo     | 0.299  | 0.533     | 0.531   | 0.531    | 0.531     | 0.531  |
| Contiguous | 0.254  | 0.496     | 0.504   | 0.502    | 0.501     | 0.500  |
| Average    | 0.317  | 0.569     | 0.571   | 0.571    | 0.572     | 0.572  |

# Since ProteinNPT is a conditional (pseudo-)generative model, we can sample new sequences conditioned on specific values of the properties of interest

#### Conditional sampling approach

- 1. Select sequence w/ highest assayed property (first batch sequence)
- 2. Form a **complete input batch** by drawing labeled sequences at random
- 3. Sample and mask a few positions in first sequence from subset w/ high row-attention w/ target
- 4. Sample new amino acids at these positions based on output softmax from ProteinNPT



#### Fitness of the proteins obtained via the ProteinNPT conditional sampling



### Poster - Great Hall & Hall B1+B2 #308

#### Come speak with us at the Conference



Pascal



Ruben



Debbie



Yarin

#### Thank you to our sponsors!





Engineering and Physical Sciences Research Council



