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Motivation: Evaluating Free-Trial ML Services

• Suppose that we want to evaluate black-box ML 
prediction services for image classification.  

• During the free trial, each service deploys an 
abstaining classifier, such that it only gives 
predictions on certain inputs and abstain on others. 

• The full (paid) versions do not abstain. We want 
to compare the performance of the full versions.
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Key Takeaway & Main Question

To the evaluator, abstentions are just missing predictions!
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How do we compare black-box abstaining classifiers 
 

while accounting for their missing predictions?



Problem Setup
Definition. An abstaining classifier is a pair of functions , where 

•  is the base classifier, which outputs a (probabilistic) prediction; and 

•  is the abstention mechanism, which outputs the probability of abstention.

(𝖿, π)

𝖿 : 𝒳 → 𝒫(𝒴)

π : 𝒳 → [𝟢, 𝟣]
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Evaluating a black-box abstaining classifier . 

1. Classifier receives an input . 

2. Classifier decides whether or not it will abstain: . 

• If , then Evaluator observes the prediction & score: . 

• If  (“rejection”), then Evaluator does NOT see its prediction or score (  is missing).

(𝖿, π)

𝖷

𝖱 ∣ 𝖷 ∼ 𝖡𝖾𝗋(π(𝖷))

𝖱 = 𝟢 𝖲 = 𝗌(𝖿(𝖷), 𝖸)

𝖱 = 𝟣 𝖲

Chow (1957); El-Yaniv & Wiener (2010)



The 3-Step Approach To Nonparametric Causal Inference
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Identification

ψ = 𝔼[μ𝟢(𝖷)]

Target Definition

 
(“Counterfactual Score”)

ψ 𝖽𝖾𝖿= 𝔼[𝖲]

Conditions  
1. Missing At Random: 

 

2. Positivity: 
 

(for some )

𝖲 ⊥⊥ 𝖱 ∣ 𝖷

π(𝖷) ≤ 𝟣 − ϵ
ϵ > 𝟢

Estimation

 𝗇 (ψ̂𝖽𝗋 − ψ)
↝ 𝒩 (𝟢, 𝖵𝖺𝗋ℙ[𝖨𝖥])

Conditions  
1. Double Robustness: 

 
 

2. IF Consistency: 

∥ ̂π − π∥𝖫𝟤∥ ̂μ𝟢 − μ𝟢∥𝖫𝟤

= 𝗈ℙ(𝟣/ 𝗇)

∥ ̂𝖨𝖥 − 𝖨𝖥∥ = 𝗈ℙ(𝟣)

cf. Rubin (1974); Robins et al. (1994); many others.

*Nuisance Functions (Learnable): 
Abstention Mechanism 

 

Selective Score Predictor 

π(𝖷) 𝖽𝖾𝖿= ℙ(𝖱 = 𝟣 ∣ 𝖷)

μ𝟢(𝖷) 𝖽𝖾𝖿= 𝔼[𝖲 ∣ 𝖱 = 𝟢, 𝖷]

Independent 
Evaluation Set

Stochastic 
Abstentions

Flexible 
Nuisance  
Learners 

(NN, RF, …)



The Doubly Robust Estimator ψ̂𝖽𝗋
Given an i.i.d. data of potentially missing predictions, ,  
the doubly robust (DR) estimator for  is defined as: 

 
The summand is the influence function for  (a first-order bias correction). 

For comparison, we can simply take the difference between the two classifiers ( ).

{(𝖷𝗂, 𝖱𝗂, (𝟣 − 𝖱𝗂)𝖲𝗂)}𝗇
𝗂=𝟣 ∼ ℙ

ψ

𝔼[μ𝟢(𝖷)]

ψ̂𝖠
𝖽𝗋 − ψ̂𝖡

𝖽𝗋
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.ψ̂𝖽𝗋 =
𝟣
𝗇

𝗇

∑
𝗂=𝟣

[ ̂μ𝟢(𝖷𝗂) +
𝟣 − 𝖱𝗂

𝟣 − ̂π(𝖷𝗂)
(𝖲𝗂 − ̂μ𝟢(𝖷𝗂))]

Other names: augmented IPW (Robins et al., 1994); 
targeted MLE (van der Laan & Rubin, 2006);  

double ML (Chernozhukov et al., 2018)

*The nuisance functions,  and , are estimated  
via cross-fitting (K-fold sample splitting).

̂μ𝟢 ̂π



Simulated Experiment: CI Miscoverage & Width
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DR CI achieves the correct miscoverage rate (small bias), and  
its width is half the width of the IPW CI (small variance).

Two abstaining classifiers, depicted using their decision 
boundary (orange), predictions (●/▲), and abstentions (x).

A: linear classifier with the  
optimal decision boundary.

B: biased classifier  
with a curved boundary.

95% CI’s Plug-in IPW DR

Random  
Forest

Miscoverage 0.64 0.14 0.05

Width 0.02 0.13 0.07

Super  
Learner

Miscoverage 0.91 0.03 0.05

Width 0.01 0.12 0.06

̂π / ̂μ𝟢

CI Miscoverage: rate of the 95% CI not covering the true , based on accuracy.  
(Blue: valid miscoverage.) 

Width: upper minus lower confidence bound. 
Both averaged over 1,000 repeated simulations.

Δ𝖠𝖡



Real Data Experiment: Comparing VGG-16 Classifiers on CIFAR-100

• Setup: We compare abstaining classifiers based off of a pre-trained VGG-16 deep 
convolutional neural network* for the CIFAR-100 dataset. Evaluation set size is 5,000. 

• Nuisance functions ( ) are learned on top of the pre-trained VGG-16 network, 
but they each use a different output layer (learned via cross-fitting).

̂π𝖠, ̂μ𝖠
𝟢 , ̂π𝖡, ̂μ𝖡

𝟢

8 *reproduced version from https://github.com/chenyaofo/pytorch-cifar-models.

Comparing VGG-16-Based Abstaining Classifiers on CIFAR-100 (n=5,000) using the Brier score.  
Estimation target: ; null hypothesis .Δ𝖠𝖡 := ψ𝖠 − ψ𝖡 𝖧𝟢 : Δ𝖠𝖡 = 𝟢

https://github.com/chenyaofo/pytorch-cifar-models


Summary of Contributions
• We propose the counterfactual score, a novel evaluation metric for black-box abstaining 

classifiers that assess the expected score had the classifier not been allowed to abstain. 

• The score and its framework reveals an underexplored connection between abstaining 
classifiers, black-box evaluation, and missing data / causal inference. 

• We formalize the identifying assumptions (MAR and positivity) for the score and give 
examples of settings in which they can be justified. 

• We develop nonparametrically efficient estimators for the counterfactual score 
(difference), and empirically show their validity & efficiency on simulated/real datasets.
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Thank You
Paper: https://arxiv.org/abs/2305.10564 
Code: https://github.com/yjchoe/ComparingAbstainingClassifiers 
NeurIPS Link: https://neurips.cc/virtual/2023/poster/72515 
YJ’s Webpage (for links to slides & poster): https://yjchoe.github.io/ 

Poster Session: Tuesday Evening (5:15-7:15pm CT on December 12th) / Poster #: 1618
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