Communication-Efficient Federated Bilevel Optimization with Global and Local Lower Level Problems

Junyi Li 1 , Feihu Huang 2 , Heng Huang 1

¹University of Maryland College Park, ²University of Pittsburgh,

January 15, 2024

Federated Bilevel Optimization Problems

• Problem Formulation:

$$\min_{x \in \mathbb{R}^p} h(x) \coloneqq \frac{1}{M} \sum_{m=1}^M f^{(m)}(x, y_x), \text{ s.t. } y_x = \operatorname*{arg\,min}_{y \in \mathbb{R}^d} \frac{1}{M} \sum_{m=1}^M g^{(m)}(x, y)$$

• Global Hyper-gradient:

$$\Phi(x,y) = \nabla_x f(x,y) - \nabla_{xy} g(x,y) \times [\nabla_{y^2} g(x,y)]^{-1} \nabla_y f(x,y),$$

Local Hyper-gradient:

$$\Phi^{(m)}(x,y) = \nabla_x f^{(m)}(x,y) - \nabla_{xy} g^{(m)}(x,y) \times [\nabla_{y^2} g^{(m)}(x,y)]^{-1} \nabla_y f^{(m)}(x,y),$$

∃ > ∢

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

Hyper-gradient Evaluation as a quadratic FL problem

Challenge:
$$\Phi(x, y_x) \neq \frac{1}{M} \sum_{m=1}^{M} \Phi^{(m)}(x, y_x)$$

Quadratic FL problem:

$$\min_{u \in \mathbb{R}^d} l(u) = \frac{1}{M} \sum_{m=1}^M u^T (\nabla_{y^2} g^{(m)}(x, y)) u - \langle \nabla_y f^{(m)}(x, y), u \rangle$$

Suppose that we denote the solution of the above problem as u^* , then we have the following linear operation to get the hypergradient:

$$\nabla h(x) = \frac{1}{M} \sum_{m=1}^{M} \left(\nabla_x f^{(m)}(x, y_x) - \nabla_{xy} g^{(m)}(x, y_x) u^* \right)$$

э

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Perform alternative update of upper level variable $x_t^{(m)}$, the lower level variable $y_t^{(m)}$ and hyper-gradient computation variable $u_t^{(m)}$

$$y_{t+1}^{(m)} = y_t^{(m)} - \gamma_t \nabla_y g^{(m)}(x_t^{(m)}, y_t^{(m)}, \mathcal{B}_y)$$

$$u_{t+1}^{(m)} = u_t^{(m)} - \tau_t \left(\nabla_{y^2} g^{(m)}(x_t^{(m)}, y_t^{(m)}; \mathcal{B}_{g,2}) u_t^{(m)} - \nabla_y f^{(m)}(x_t^{(m)}, y_t^{(m)}; \mathcal{B}_{f,2}) \right)$$

$$x_{t+1}^{(m)} = x_t^{(m)} - \eta_t \left(\nabla_x f^{(m)}(x_t^{(m)}, y_t^{(m)}; \mathcal{B}_{f,1}) - \nabla_{xy} g^{(m)}(x_t^{(m)}, y_t^{(m)}; \mathcal{B}_{g,1}) u_t^{(m)} \right)$$

Accelerate FedBiO with momentum-based variance reduction (FedBiOAcc)

э

4/7

• • • • • • • • • • • •

Convergence Theorem

Theorem

Suppose we choose learning rate $\alpha_t = \frac{\delta}{(u+t)^{1/3}}, t \in [T]$, for some constant δ and u, and let c_{ν} , c_{ω} , c_u choose some value, η , γ and τ be some small values decided by the Lipschitz constants of h(x), we choose the minibatch size to be $b_x = b_y = b$ and the first batch to be $b_1 = O(Ib)$, then we have:

$$\frac{1}{T} \sum_{t=1}^{T-1} \mathbb{E} \left[\|\nabla h(\bar{x}_t)\|^2 \right] = O\left(\frac{\kappa^{19/3}I}{T} + \frac{\kappa^{16/3}}{(bMT)^{2/3}}\right)$$

To reach an ϵ -stationary point, we need $T = O(\kappa^8 (bM)^{-1} \epsilon^{-1.5})$, $I = O(\kappa^{5/3} (bM)^{-1} \epsilon^{-0.5})$.

• • • • • • • • • • • • •

Federated Data Cleaning

Experimental Results

• Validation Error vs Communication Rounds. From Left to Right: $\rho = 0.1, 0.4, 0.8, 0.95$. The local step I is set as 5 for FedBiO, FedBiOAcc and FedAvg.

・ロト ・回 ト ・ ヨト ・

Federated Bilevel Optimization with Local Lower Level Problems

Problem Formulation:

$$\min_{x \in \mathbb{R}^p} h(x) \coloneqq \frac{1}{M} \sum_{m=1}^M f^{(m)}(x, y_x^{(m)}), \text{ s.t. } y_x^{(m)} = \argmin_{y \in \mathbb{R}^d} g^{(m)}(x, y)$$

Federated Hyper-Representation Learning:

 Validation Error vs Communication Rounds for the Omniglot Dataset. From Left to Right: 5-way-1-shot, 5-way-5-shot, 20-way-1-shot, 20-way-5-shot. The local step I is set to 5