

CamoPatch: An Evolutionary Strategy for Generating Camouflaged Adversarial Patches

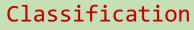
Phoenix Williams, Ke Li

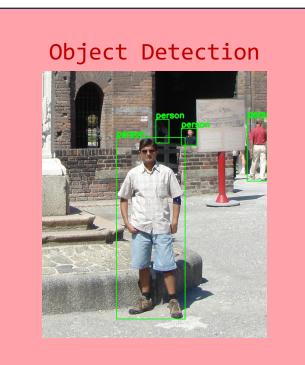
Department of Computer Science, University of Exeter, UK

⊠ pw384@exeter.ac.uk

https://phoenixwilliams.github.io/PersonalWebsite/

⊠ k.li@exeter.ac.uk


http://colalab.ai


What Is Computer Vision?

"Computer vision is the art and science of teaching machines to see, enabling them to understand the visual tapestry of our world." - ChatGPT

"Welsh springer spaniel"


Image Segmentation

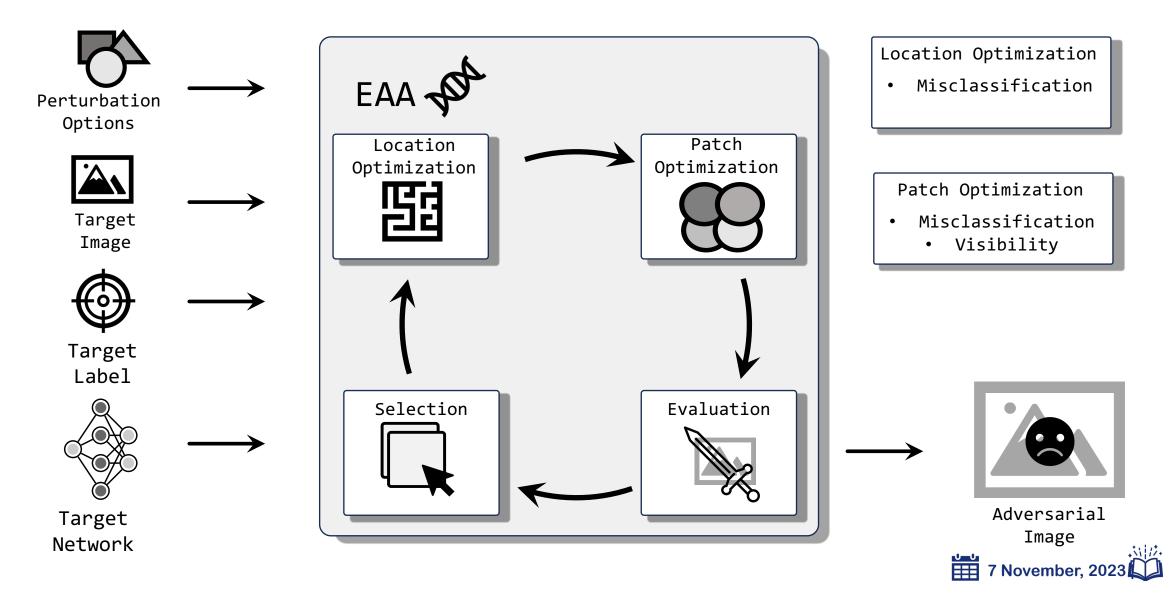
What are Adversarial Patches?

Our Motivation

"By ignoring the visibility of these modifications the applicability of existing methods is questionable"

"Minimising the size of the modification increases its applicability within the real-world whilst improving the evaluation of an AI's robustness"

Tree frog \rightarrow Grasshopper


"Constructing an adversarial patch requires jointly optimising its location and pattern"

"Location of the patch is represented by integers between 0 and (W x H) where W and H are the height and width of the image."

"We construct the patch using a set of semi-transparent circle shapes, allowing for effective performance and camouflage"

	VGG-16			ResNet-50			П	
Attack Method	Accuracy	l_2	Non- Normalized Residual	Accuracy	l_2	Non- Normalized Residual		
-	73.36%	-	-	76.12%	-			
CamoPatch	9.70% (0.03)	$0.09(0.02)^{\dagger}$	$0.11 (0.02)^{\dagger}$	$10.00\% (0.02)^{\dagger}$	$0.08 (0.01)^\dagger$	$0.10 \ (0.01)^{\dagger}$	РА	LOAP
$Patch-RS^*$	6.82% (0.04)	$0.42 \ (0.02)^{\ddagger}$	$0.30 (0.05)^{\ddagger}$	$15.92\% (0.02)^{\ddagger}$	$0.45 \ (0.04)^{\ddagger}$	$0.31 \ (0.04)^{\ddagger}$		
Patch-RS	6.82% (0.04)	$0.63 \ (0.01)^{\ddagger}$	$0.61 \ (0.07)^{\ddagger}$	$15.92\% (0.02)^{\ddagger}$	$0.67 (0.08)^{\ddagger}$	$0.69 (0.07)^{\ddagger}$	the prover of	and the second
TPA	$47.11\% (1.30)^{\ddagger}$	$0.61 \ (0.13)^{\ddagger}$	$0.55 \ (0.05)^{\ddagger}$	$38.98\% (1.41)^{\ddagger}$	$0.61 (0.07)^{\ddagger}$	$0.58(0.07)^{\ddagger}$		
OPA	$32.19\% \ (0.10)^{\ddagger}$	$0.71 (0.20)^{\ddagger}$	$0.64 \ (0.06)^{\ddagger}$	$27.91\% (1.12)^{\ddagger}$	$0.71 (0.14)^{\ddagger}$	$0.66 \ (0.04)^{\ddagger}$		And the second s
LOAP	$37.99\% \ (0.40)^{\ddagger}$	$0.68 (0.02)^{\ddagger}$	$0.63 \ (0.05)^{\ddagger}$	$47.99\% (0.10)^{\ddagger}$	$0.78~(0.12)^{\ddagger}$	$0.67 \ (0.05)^{\ddagger}$		
Adv-watermark	$32.00\% \ (0.10)^{\ddagger}$	$0.13(0.08)^{\ddagger}$	$0.25(0.05)^{\ddagger}$	$35.00\% (0.40)^{\ddagger}$	$0.16(0.01)^{\ddagger}$	$0.31(0.07)^{\ddagger}$		
	A	AT-WideResNet-50-2			AT-ResNet-50			A DANKER P
Attack	Accuracy	l_2	Non-	Accuracy	l_2	Non-		
\mathbf{Method}			Normalized			Normalized		
	68.46%		Residual	C1.00(7		Residual		and the second se
- CamoPatch	$\frac{12.98\% (0.01)^{\dagger}}{12.98\% (0.01)^{\dagger}}$	-0.14 (0.05) [†]	$0.12 (0.07)^{\dagger}$	64.02% 6.00% (0.03) [†]	-0.15 (0.03) [†]	$0.13 \ (0.03)^{\dagger}$	the second	
Patch-RS*	$12.98\% (0.01)^{\ddagger}$ $14.42\% (0.01)^{\ddagger}$	$0.14 (0.03)^{\ddagger}$ $0.43 (0.07)^{\ddagger}$	$0.12 (0.07)^{+}$ $0.30 (0.05)^{\ddagger}$	$12.00\% (0.03)^{\ddagger}$	$0.13 (0.03)^{\ddagger}$ $0.41 (0.12)^{\ddagger}$	$0.13 (0.03)^{\ddagger}$ $0.33 (0.05)^{\ddagger}$		a not be teelywhere and breagers at
Patch-RS	$14.42\% (0.01)^{\ddagger}$ $14.42\% (0.01)^{\ddagger}$	$0.43 (0.07)^{+}$ $0.74 (0.08)^{\ddagger}$	$0.30(0.03)^{+}$ $0.42(0.07)^{\ddagger}$	$12.00\% (0.02)^{\ddagger}$ $12.00\% (0.02)^{\ddagger}$	$0.41 (0.12)^{+}$ $0.74 (0.09)^{\ddagger}$	$0.33 (0.03)^{+}$ $0.43 (0.07)^{\ddagger}$	and the second	and the second sec
TPA	$51.66\% (1.3)^{\ddagger}$	0.74(0.03) $0.82(1.21)^{\ddagger}$	$0.42 (0.07)^{\ddagger}$ $0.82 (0.07)^{\ddagger}$	$34.82\% (1.41)^{\ddagger}$	0.74(0.09) $0.92(0.05)^{\ddagger}$	0.43(0.07) $0.87(0.09)^{\ddagger}$	and a start of	and the second s
OPA	$36.88\% (0.1)^{\ddagger}$	0.82(1.21) $0.76(0.20)^{\ddagger}$	0.32(0.07) $0.74(0.05)^{\ddagger}$	$24.83\% (1.12)^{\ddagger}$	0.32 (0.03) $0.77 (0.14)^{\ddagger}$	$0.75 (0.04)^{\ddagger}$	Contraction of the	
LOAP	$38.85\% (0.4)^{\ddagger}$	$0.76 (0.20)^{\ddagger}$	$0.46 (0.03)^{\ddagger}$	$\frac{24.83\% (1.12)}{48.89\% (0.1)^{\ddagger}}$	0.77 (0.14) $0.72 (0.18)^{\ddagger}$	$0.64 \ (0.03)^{\ddagger}$	199 - 1	
Adv-watermark	$52.00\% (0.4)^{\ddagger}$	$0.37(0.05)^{\ddagger}$	$0.23(0.07)^{\ddagger}$	$44.00\% (0.1)^{\ddagger}$	$0.42 (0.13)^{\ddagger}$	0.04(0.03) $0.29(0.07)^{\ddagger}$	61 J 200	
Adv-watermark	52.0070 (0.5)	0.01(0.00)	0.25(0.01)	44.0070 (0.3)	0.42 (0.02)	0.23 (0.01)		
	ViT-B/16 BagNet9 with PatchGuard						The second second	
Attack	Accuracy	l ₂	Non-	Accuracy	l_2	Non-	- Conton	
Method	riccuracy	62	Normalized	neeuracy	62	Normalized	*	
			Residual			Residual	A CONTRACTOR	and the second
-	77.91%	-	-	55.1%	-		96- AN AN AN AN	Service States
CamoPatch	$8.00\% \; (0.05)^\dagger$	$0.09 \ (0.02)$	$0.12 \ (0.02)$	$\mathbf{3.20\%}\ (0.01)^\dagger$	$0.07(0.03)^{\ddagger}$	$0.11 (0.01)^{\dagger}$		
$Patch-RS^*$	$19.00\% \ (0.10)^{\ddagger}$	$0.68~(0.05)^{\dagger}$	$0.39 (0.07)^{\ddagger}$	$5.80\% (0.02)^{\ddagger}$	$0.42 (0.05)^{\ddagger}$	$0.30 (0.05)^{\dagger}$		
Patch-RS	$19.00\% \ (0.10)^{\ddagger}$	$0.71~(0.12)^{\dagger}$	$0.41 \ (0.09)^{\ddagger}$	$5.80\% (0.02)^{\ddagger}$	$0.62 (0.18)^{\ddagger}$	$0.57 \ (0.11)^{\dagger}$		
TPA	$38.12\% \ (0.91)^{\ddagger}$	$0.59 (0.08)^{\ddagger}$	$0.54 \ (0.09)^{\ddagger}$	$32.87\% (1.45)^{\ddagger}$	$0.62 \ (0.11)^{\ddagger}$	$0.61(0.09)^{\ddagger}$		
OPA	$33.09\% \ (0.17)^{\ddagger}$	$0.68~(0.23)^{\ddagger}$	$0.68~(0.07)^{\ddagger}$	$57.89\% (2.01)^{\ddagger}$	$0.61 (0.16)^{\ddagger}$	$0.67 \ (0.04)^{\ddagger}$		
LOAP	$43.91\% \ (0.80)^{\ddagger}$	$0.63 (0.05)^{\ddagger}$	$0.50 \ (0.13)^{\ddagger}$	$72.82\% (0.14)^{\ddagger}$	$0.89 (0.23)^{\ddagger}$	$0.78 \ (0.11)^{\ddagger}$		
Adv-watermark	$36.01\% \ (0.12)^{\ddagger}$	$0.17(0.04)^{\ddagger}$	$0.28(0.03)^{\ddagger}$	$42.00\% (0.45)^{\ddagger}$	$0.14(0.01)^{\ddagger}$	$0.29(0.05)^{\ddagger}$		

"Initial S=stages consist of locating an optimal location and pattern that cause the desired misclassification"

"Once the optimal location has been found, the RGB circles approximate the area of the image the patch is placed upon, reducing its visibility"

Thank You For Your Attention!

CamoPatch:

URL: https://shorturl.at/rsv05

⊠ pw384@exeter.ac.uk

https://phoenixwilliams.github.io/PersonalWebsite/

