Multi-Object Representation Learning via Feature Connectivity and Object-Centric Regularization

Alex Foo, Wynne Hsu, Mong Li Lee School of Computing, National University of Singapore

Why Multi-Object Representation Learning?

- Human understanding of the world relies on objects as compositional building blocks [Kahneman et al., 1992]
- Emulating this in machine learning algorithms through object-centric representations can improve [Greff et al., 2020]:
 - Robustness
 - Sample Efficiency
 - Generalization to out-of-domain distributions
 - Interpretability

Limitations of Current Approaches

- Recent work utilizes a generative approach which optimizes pixel-based reconstruction to learn object-centric representations [Yuan et al., 2022]
- Pixel-based reconstruction prioritizes pixel accuracy over object discovery and functional feature extraction, which may lead to failure in:
 - Discovering objects [Locatello et al., 2020]
 - Obtaining useful object features such as position and shape [Kabra et al., 2019]

Key Contributions

- We propose a framework which leverages on feature connectivity and design two object-centric regularization terms
- We demonstrate that proposed approach:
 - Outperforms SOTA methods in discovering multiple objects from simulated, real-world, complex texture and common object images in a fine-grained manner without supervision
 - Attains sample efficiency and is generalizable to out-of-domain images
 - Learned object representations accurately predict key object properties in downstream tasks

OC-Net: Overview

OC-Net: Object Discovery

Uniformly sample a pixel embedding yet to be assigned to an object

Use Dijkstra's algorithm to compute the shortest distance of the sampled pixel embedding to all other embeddings, where distance between a pair of neighbouring pixels is defined as:

$$sim(\mathbf{p}_m, \mathbf{p}_k) = \sqrt{\sum_{d=1}^{D} (\mathbf{p}_m[d] - \mathbf{p}_k[d])^2}$$

Consider pixel embeddings to be part of the same object as the sampled pixel embedding according to a threshold

Obtain the object representation by taking the sum of the extracted

mask information and the average of pixel embeddings

OC-Net: Object Discovery

OC-Net: Object-Centric Regularization

We design two object-centric regularization terms to improve the quality of the learned object representations for downstream generalization and object discovery

OC-Net: Object-Centric Regularization

Theorem 3.1. Let Y be the matrix of labels of the training samples and P_Z be the projection matrix of Z:

$$\mathbf{P}_{\mathbf{Z}} = \mathbf{I} - \mathbf{Z}^{\top} (\Sigma_{\mathbf{Z}})^{\dagger} \mathbf{Z},$$
(5)

where I is the identity matrix, $(.)^{\dagger}$ is the pseudoinverse and $\Sigma_{\mathbf{Z}} = \mathbf{Z}\mathbf{Z}^{\top}$ is the unnormalized covariance matrix of Z. Let $||.||_F$ be the Frobenius norm. Then, the following relation holds:

$$\mathbf{f}_{\mathbf{Z}} \le ||\mathbf{P}_{\mathbf{Z}}||_F ||\mathbf{Y}||_F.$$
(6)

 L_{sep} maximizes the distance between object representations in the latent space, encouraging the model to learn distinct and non-overlapping object representations:

$$\mathcal{L}_{sep} = rac{1}{D} \sum_{d=1}^{D} \max(0, 1 - \sqrt{\sigma_d + au})$$

 L_{ent} minimizes the correlation between dimensions in the latent space Z, achieving more disentangled object representations which are easier to manipulate and analyze:

$$\mathcal{L}_{ent} = rac{1}{D imes (M-1)} \sum_{i
eq j} \Sigma_{\mathbf{Z}}[i, j]$$

Performance Study

Experiment Setup: Datasets

Dataset	Туре	Ground Truth	Image Size	# Samples
Multi-dSprites	Simulated	Pixel Mask	64×64	1 M
Tetrominoes-NM	Simulated	Pixel Mask	35 imes 35	1 M
SVHN	Real-World	Bounding Box	Varied	530K
IDRiD	Real-World	Pixel Mask	4288×2848	81
CLEVRTEX	Complex Texture	Pixel Mask	128×128	50K
CLEVRTEX-OOD	Complex Texture	Pixel Mask	128×128	10K
Flowers	Common Object	Pixel Mask	128×128	7K
Birds	Common Object	Pixel Mask	128×128	11 K
COCO	Common Object	Pixel Mask	128×128	12 K

Table 2: Evaluation scores for the discovered foreground objects.

(a) Simulated datasets

	Multi-dSprites			Т	etrominoes-NI	Ν
Method	ARI	mDice	mIoU	ARI	mDice	mIoU
SLIC	$67.9 {\pm} 0.0$	$78.5{\pm}0.0$	$70.8{\pm}0.0$	$53.0 {\pm} 0.0$	66.1±0.0	$53.6{\pm}0.0$
Felzenszwalb	$97.4{\pm}0.0$	$98.6 {\pm} 0.0$	$95.0 {\pm} 0.0$	$95.0 {\pm} 0.0$	$98.0 {\pm} 0.0$	$96.9 {\pm} 0.0$
Slot Attention	91.3±0.3	45.7 ± 0.7	$32.6 {\pm} 0.6$	$99.8 {\pm} 0.1$	41.5 ± 0.8	26.6 ± 0.7
EfficientMORL	85.2 ± 0.5	30.1 ± 1.3	19.5 ± 1.1	99.0 ± 1.7	42.5 ± 2.3	27.6 ± 1.9
GENESIS-V2	85.0±1.3	81.5 ± 1.9	72.2 ± 1.4	97.6 ± 0.5	47.1 ± 1.1	$31.0 {\pm} 0.8$
SLATE	89.5 ± 1.2	$82.5 {\pm} 0.9$	72.6 ± 1.1	84.5 ± 1.5	57.8 ± 0.9	44.3 ± 0.8
SysBinder	72.3 ± 1.2	30.6 ± 1.1	19.6 ± 1.0	90.7 ± 1.7	41.8 ± 1.9	27.0 ± 1.7
BO-QSA	90.4 ± 1.1	91.6 ± 1.1	88.0 ± 1.2	99.3 ± 0.3	40.9 ± 1.4	25.8 ± 1.2
OC-Net	99.8±0.0	99.5±0.0	99.1±0.0	$100.0{\pm}0.0$	$100.0{\pm}0.0$	$100.0{\pm}0.0$

(b) Real-world datasets

		SVHN			IDRiD	
Method	ARI	mDice	mIoU	ARI	mDice	mIoU
SLIC	$5.3 {\pm} 0.0$	$50.1 {\pm} 0.0$	$34.5{\pm}0.0$	$32.2{\pm}0.0$	$12.7 {\pm} 0.0$	$8.8{\pm}0.0$
Felzenszwalb	31.7 ± 0.0	51.6 ± 0.0	$39.8 {\pm} 0.0$	14.7 ± 0.0	19.0 ± 0.0	15.4 ± 0.0
Slot Attention	38.9 ± 1.5	51.7 ± 1.8	36.7 ± 1.7	28.7 ± 1.1	8.6 ± 1.7	5.0 ± 1.6
EfficientMORL	32.2 ± 1.7	49.2 ± 2.0	$34.0{\pm}1.8$	16.8 ± 1.5	11.1 ± 2.7	$7.0{\pm}1.8$
GENESIS-V2	28.6 ± 1.4	60.8 ± 1.5	45.9 ± 1.4	18.3 ± 1.6	8.8 ± 1.9	5.4 ± 1.6
SLATE	21.2 ± 1.2	57.0 ± 1.3	41.7 ± 1.5	35.6 ± 2.1	8.1 ± 1.2	4.7 ± 1.8
SysBinder	15.8 ± 1.6	49.5 ± 1.9	34.1 ± 1.8	25.2 ± 1.3	16.6 ± 1.7	11.1 ± 1.8
BO-QSA	24.3 ± 1.2	62.0 ± 1.6	48.3 ± 1.3	27.7 ± 2.0	$7.0{\pm}1.9$	4.5 ± 1.7
OC-Net	39.7±0.1	$64.6{\pm}0.1$	49.9±0.1	39.0±0.4	38.1±0.2	$31.2{\pm}0.2$

(c) Complex textures dataset

	CLEVRTEX			CL	EVRTEX-O	OD
Method	ARI	mDice	mIoU	ARI	mDice	mIoU
SLIC	$27.4 {\pm} 0.0$	$20.0 {\pm} 0.0$	$13.0 {\pm} 0.0$	$25.8{\pm}0.0$	21.7±0.0	14.0 ± 0.0
Felzenszwalb	57.3 ± 0.0	$33.6 {\pm} 0.0$	$26.8 {\pm} 0.0$	44.6 ± 0.0	$29.6 {\pm} 0.0$	$23.4{\pm}0.0$
Slot Attention	58.6 ± 1.6	35.0 ± 1.6	26.7 ± 1.5	51.3 ± 1.9	34.1 ± 1.4	25.1 ± 1.3
EfficientMORL	59.5 ± 1.7	37.7 ± 1.5	31.1 ± 1.4	53.9 ± 2.5	32.2 ± 2.4	$25.3 {\pm} 2.8$
GENESIS-V2	65.6 ± 1.8	36.9 ± 1.4	30.4 ± 1.4	67.6±1.6	34.2 ± 1.5	27.6 ± 1.9
SLATE	57.5 ± 1.8	33.3 ± 1.6	24.4 ± 1.5	56.6 ± 1.3	34.7 ± 2.1	25.3 ± 1.8
SysBinder	61.4 ± 1.7	31.3 ± 1.5	23.1 ± 1.4	61.0 ± 2.4	32.3 ± 2.0	23.8 ± 1.8
BO-QSA	70.9±1.9	42.9 ± 1.8	34.7 ± 1.7	66.1±1.3	42.8 ± 1.4	33.9 ± 1.3
OC-Net	70.7±0.9	45.1±0.9	37.5 ± 0.7	$69.8 {\pm} 0.8$	43.5 ± 0.7	35.0±0.6

(d) Common objects datasets

	Flowers		Bi	Birds		COCO	
Method	Dice	IoU	Dice	IoU	mDice	mIoU	
SLIC	$30.5 {\pm} 0.0$	$18.4 {\pm} 0.0$	33.1±0.0	$20.3 {\pm} 0.0$	$36.2{\pm}0.0$	24.4±0.0	
Felzenszwalb	43.7 ± 0.0	$30.4 {\pm} 0.0$	34.3 ± 0.0	23.0 ± 0.0	36.6 ± 0.0	27.1 ± 0.0	
Slot Attention	43.0 ± 1.5	28.6 ± 1.2	42.9 ± 2.0	27.9 ± 1.8	$24.8 {\pm} 2.0$	15.0 ± 1.7	
EfficientMORL	59.5 ± 2.1	45.2 ± 2.2	44.0 ± 1.9	30.8 ± 1.8	$28.4{\pm}2.3$	$18.9 {\pm} 2.1$	
GENESIS-V2	63.7 ± 2.2	50.2 ± 2.2	41.4 ± 1.7	27.7 ± 1.5	25.1 ± 2.1	16.1 ± 1.7	
SLATE	55.6 ± 1.2	40.8 ± 1.8	39.5 ± 1.5	25.9 ± 1.8	37.0 ± 1.9	24.4 ± 1.8	
SysBinder	45.0 ± 1.8	30.8 ± 1.6	33.7 ± 1.3	21.1 ± 2.0	$18.4{\pm}1.6$	10.7 ± 1.4	
BO-QSA	65.8 ± 1.9	51.7 ± 1.9	44.6 ± 1.7	30.3 ± 1.5	34.9 ± 1.1	$23.6 {\pm} 0.9$	
OC-Net	$67.2 {\pm} 0.2$	54.4±0.2	47.8 ± 0.2	$33.5{\pm}0.2$	$48.2{\pm}0.2$	$35.6{\pm}0.2$	

(a) Multi-dSprites

(b) Tetrominoes-NM

(c) SVHN

(d) IDRiD

Figure 2: Visualization of discovered objects.

(e) CLEVRTEX

(f) CLEVRTEX-OOD

(g) Flowers

(h) Birds

Experiments on Sample Efficiency

- One obstacle to unsupervised object discovery is the availability of a sufficiently large number of suitable training samples.
- Sample efficiency refers to a model's ability to learn effectively from a relatively small number of examples.

Figure 3: mIoU scores vs decreasing number of training samples.

Experiments on Model Generalizability

 In this set of experiments, we compare the generalization ability of OC-Net with the baselines by training the models on Multi-dSprites and testing them on the other datasets.

Table 3: mIoU scores for model generalizability after training on Multi-dSprites.

Method	Tetrominoes-NM	SVHN	IDRiD	CLEVRTEX	CLEVRTEX-OOD
Slot Attention EfficientMORI	21.8 ± 3.5 21.2 + 3.8	19.5 ± 3.8 23.4 ± 2.8	7.5 ± 2.5	12.2 ± 2.2 127+32	12.3 ± 2.2 15 2+2 0
GENESIS-V2	42.9 ± 4.9	31.1 ± 2.8	8.5 ± 2.4	12.7 ± 3.2 21.9 ± 1.6	13.2 ± 2.0 21.3 ±2.5
SLATE SugPinder	51.4 ± 1.6	21.1 ± 2.0	10.0 ± 1.7	12.7 ± 2.2	12.9 ± 1.8
BO-QSA	28.5 ± 1.8 41.8 ± 1.8	23.8 ± 1.1 24.3 ± 2.0	13.9 ± 1.8 4.0 ± 1.5	10.6 ± 1.3 24.4 ± 1.4	11.0 ± 1.9 22.8±2.5
OC-Net	$100.0{\pm}0.0$	47.5±0.5	29.1±0.5	31.7±0.6	31.3±0.6

Prediction based on Learned Object Representation

• One characteristic of an effective object-centric representation is its ability to encode object properties such as color, position and shape [Schölkopf et al., 2021].

Table 5: R^2 scores for object property prediction on simulated datasets

	Multi-dSprites			Ter	trominoes-NI	М
Method	Color	Position	Shape	Color	Position	Shape
Slot Attention	72.2±12	96.8±0.1	$38.2{\pm}0.0$	86.5±6.5	98.7±0.6	36.3±0.0
EfficientMORL	$86.5 {\pm} 6.2$	$95.8 {\pm} 0.1$	$61.7 {\pm} 0.0$	94.9 ± 3.2	$97.9 {\pm} 0.7$	$68.5 {\pm} 0.0$
GENESIS-V2	78.1 ± 7.5	$97.1 {\pm} 0.7$	$75.8{\pm}0.0$	88.1 ± 5.8	$94.6{\pm}2.6$	$37.9 {\pm} 0.0$
SLATE	$87.5 {\pm} 0.7$	$90.6 {\pm} 4.4$	31.7 ± 0.0	85.5 ± 3.9	$89.6 {\pm} 0.7$	$10.5 {\pm} 0.0$
SysBinder	$73.6 {\pm} 1.0$	69.3 ± 3.4	$33.3 {\pm} 0.0$	$97.9 {\pm} 0.6$	$77.8 {\pm} 2.7$	$19.9 {\pm} 0.0$
BO-QSA	96.3±1.6	$97.4{\pm}0.1$	$75.2{\pm}0.0$	$98.1 {\pm} 0.7$	$98.9 {\pm} 0.2$	$52.5 {\pm} 0.0$
OC-Net	98.0±0.6	98.3±0.1	78.1±0.0	$100.0{\pm}0.0$	99.4±0.1	98.7±0.0

OC-Net

- We have described a framework called OC-Net that learns object-centric representations in a fine-grained manner without supervision.
- From the results of experiments conducted on simulated, real-world, complex texture and common object images, we have demonstrated the superior quality of the object representations over current state-of-the-art. Moreover, we have highlighted the sample efficiency and generalizability of OC-Net.
- Finally, we have shown how the discovered object representations can be used to predict object properties in a downstream task, indicating its potential use for other computer vision applications where samples and ground truth labels are limited.

Thank you