

Predicting mutational effects on protein-protein binding via a side-chain diffusion probabilistic model

Authors: Shiwei Liu*, Tian Zhu*, Milong Ren, Chungong Yu,

Dongbo Bu, Haicang Zhang#

Presenter: Tian Zhu

Affiliation: Institute of Computing Technology Chinese Academy of Sciences

Introduction

- Many crucial biological processes are regulated by intricate networks of protein-protein interactions.
- In protein engineering, especially in therapeutic discovery, inducing amino acid mutations on the protein-protein interface is essential for modulating binding affinity.
- When different ligands bind to the same receptor, side-chain conformations vary significantly, even though backbone conformations remain consistent.

Motivation

- When docking with various ligands, the side-chain conformations at the protein interface can change.
 - Is it possible to use a generative model to capture the uncertainty in side-chain conformations?
 - Can the generative model enhance our predictions of mutational effects on protein-protein interactions?

Method - SidechainDiff

- It's the first probabilistic model employing conditional Riemannian diffusion for protein side-chain conformations.
- Additionally, it captures the structural context of mutations at the protein-protein interface.

Method - DiffAffinity

• A model that leverages the representations from SidechainDiff to forecast changes in binding free energy due to mutations.

 DiffAffinity surpasses all baseline models in nearly every metric, achieving state-of-the-art results on the SKEMPI2 dataset.

				Ove	rall			Per-St	tructure
Method	mutations	Pearson	Spearman	RMSE	MAE	AUROC	AUPRC	Pearson	Spearman
	all	0.319	0.416	1.959	1.357	0.671	0.839	0.376	0.375
FoldX	single	0.315	0.361	1.651	1.146	0.657	0.839	0.382	0.360
	multiple	0.256	0.418	2.608	1.926	0.704	0.841	0.333	0.340
	all	0.311	0.346	1.617	1.131	0.656	0.810	0.328	0.298
Rosetta	single	0.325	0.367	1.183	0.987	0.674	0.834	0.351	0.418
	multiple	0.199	0.230	2.658	2.024	0.621	0.798	0.191	0.083
	all	0.402	0.427	1.587	1.102	0.675	0.866	0.414	0.386
FelxDDG	single	0.425	0.431	1.457	0.997	0.677	0.874	0.433	0.435
	multiple	0.398	0.419	1.765	1.326	0.669	0.854	0.401	0.363
	all	0.192	0.157	1.961	1.368	0.541	0.735	0.007	-0.012
ESM-1v	single	0.191	0.157	1.723	1.192	0.549	0.770	0.042	0.027
	multiple	0.192	0.175	2.759	2.119	0.542	0.678	-0.060	-0.128
	all	0.319	0.281	1.886	1.286	0.590	0.768	0.224	0.202
ESM-IF	single	0.296	0.287	1.673	1.137	0.605	0.776	0.391	0.364
	multiple	0.326	0.335	2.645	1.956	0.637	0.754	0.202	0.149
	all	0.133	0.138	2.048	1.460	0.547	0.738	0.044	0.039
ESM2	single	0.100	0.120	1.730	1.210	0.541	0.734	0.019	0.036
Loniz	multiple	0.170	0.163	2.658	2.021	0.566	0.746	0.010	0.010
	all	0.623	0.498	1.615	1.179	0.721	0.887	0.362	0.316
ESM2*	single	0.625	0.468	1.357	0.986	0.707	0.879	0.391	0.342
	multiple	0.603	0.529	2.15	1.67	0.758	0.909	0.333	0.304
	all	0.630	0.400	1.313	0.995	0.696	0.892	0.356	0.321
DDGPred	single	0.652	0.359	1.309	0.936	0.656	0.884	0.351	0.318
	multiple	0.591	0.503	2.181	1.670	0.759	0.913	0.373	0.385
	all	0.632	0.527	1.601	1.142	0.731	0.887	0.415	0.376
RDE-Net	single	0.637	0.491	1.341	0.961	0.720	0.885	0.413	0.385
	multiple	0.601	0.567	2.157	1.631	0.768	0.898	0.390	0.360
	all	0.326	0.305	1.954	1.399	0.642	0.857	0.222	0.222
Linear	single	0.318	0.293	1.649	1.175	0.651	0.854	0.209	0.202
	multiple	0.277	0.288	2.593	1.961	0.629	0.867	0.193	0.195
	all	0.646	0.538	1.578	1.113	0.742	0.741	0.415	0.392
DiffAffinity	*single	0.657	0.523	1.312	0.931	0.742	0.741	0.417	0.396
	multiple	0.613	0.542	2.133	1.606	0.750	0.750	0.407	0.379
	all	0.669	0.556	1.535	1.093	0.744	0.896	0.422	0.397
DiffAffinity	single	0.672	0.523	1.288	0.923	0.733	0.887	0.429	0.409
	multiple	0.650	0.602	2.051	1.540	0.784	0.921	0.414	0.387

Table 1: Evaluation of prediction on the SKEMPI2 dataset

¹ Linear is short of DiffAffinity-Linear just for saving space

 Representations from SidechainDiff are more adept at distinguishing data based on varying binding free energy values.

7

- DiffAffinity aids in optimizing antibodies against the SARS-CoV-2 spike protein and in mutational scanning of the spike protein's receptor binding domain (RBD).
 - Predicting the impact of every single-point mutation on the binding affinity of the ancestral Wuhan-Hu-1 RBD (PDB ID:6M0J).
 - Optimizing human antibodies targeting the SARS-CoV-2 spike protein (PDB ID:7FAE).

Table 2: Pears tion coefficien COV-2 binding	son correla- t in SARS- affinity	Table 3: Rankings of the five favorable mutations on the human anti- body against SARS-CoV-2 receptor-binding domain (RBD) by various competitive methods						
Method	Pearson	Method	TH31W	AH53F	NH57L	RH103M	LH104F	
FoldX	0.385	FoldX	4.25%	$\mathbf{14.57\%}$	2.43%	27.13%	63.77%	
RDE-Net	0.438	RDE-Net	5.06%	12.15%	55.47%	50.61%	9.51%	
DiffAffinity*	0.295	DiffAffinity*	7.29%	$\mathbf{0.81\%}$	$\mathbf{19.03\%}$	84.21%	28.54%	
DiffAffinity	0.466	DiffAffinity	7.28%	$\mathbf{3.64\%}$	$\mathbf{18.82\%}$	81.78%	$\mathbf{10.93\%}$	

Method

SidechainDiff outperforms energy-based approaches and matches the performance of RDE and AttnPacker

 $\chi^{(4)}$

average

Table 4: Evaluation of predicted side-chain conformations with more comparisons

 $\chi^{(3)}$

 $\chi^{(1)}$

 $\chi^{(2)}$

Table 5:	Accuracy
of side-ch	nain con-
formations	stratified
based on th	ne contact
number	
contact	average

 $8 \sim 10$

 $11 \sim 19$

22.39

15.43

clash number	based on the contac number		
118.44	contact number	average χ	
113.31	$1\sim7$	28.70	

Proportion	100%	82.6%	28.2%	12.6%	-	
SCWRL4	24.33°	32.84°	47.42°	56.15°	28.21°	118.44
Rosetta	23.98°	32.14°	48.49°	58.78°	28.09°	113.31
RDE	17.13°	28.47°	43.54°	58.62°	21.99°	34.41
DLPacker	21.40°	29.27°	50.77°	74.64°	26.42°	62.45
AttnPacker	19.65°	25.17°	47.61°	55.08°	22.35°	57.31
DiffAffinity	18.00°	27.41°	43.97°	56.65°	22.06°	27.70

• SidechainDiff accurately forecasts the plausible variations in sidechain conformations.

THE ACLOCKY OF STREET

Thanks